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Heavy-ion collision experiments at high energies produce hot and densestrongly-interacting
matter, and provide an opportunity to explore the phase diagram ofquantum chromodynamics
(QCD) in the plane of temperature (T) and baryon chemical potential (µ). Many model studies [1],
as well as recent lattice studies [2], indicate that at sufficiently large baryonic densities, there is a
line of first-order transitions in the (µ ,T)-plane between a chirally-symmetric phase and a broken-
symmetry phase. As one moves along the phase boundary towards higherT and smallerµ, the
first-order transition becomes weaker – ending in atricritical point (TCP) in the limit of vanishing
current quark mass or a rapid crossover for non-zero current quark mass [3]. For even smaller
values ofµ, there is a line of second-order transitions. While the high-T and small-µ region
of the QCD phase diagram has been explored in recent experiments, future heavy-ion collision
experiments plan to explore the high baryon density regime, particularly the region around the
TCP [4].

It is important to stress here that heavy-ion experiments are essentially nonequilibrium pro-
cesses. It is challenging to extract the thermodynamic properties of quark-hadron phase transition
from nuclear collision experiments due to the absence of global thermal equllibrium. This is be-
cause nonequllibrium effects play an important role in the evolution of the fireball. Therefore, an
understanding of the equilibrium phase diagram alone is not sufficient to discuss the properties of
the system. One also has to understand the kinetic processes which drive the phase transition, and
the properties of the nonequilibrium structures that the system goes through to reach equilibrium.
In this context, both thecritical dynamicsand thefar-from-equilibrium kinetics, of the chiral tran-
sition have attracted much recent attention. In the study of critical dynamics (i.e. the temporal
behaviour in the vicinity of critical point), much interest has been focussedupon the signatures
of thecritical end point(CEP) of QCD. In the present work, on the otherhand, we focus on thefar
from equllibrium kinetics, i.e. the evolution of the system after a quench froma disordered phase to
an ordered phase with non-vansihing quark-anti-quark condensates. In this context, the relaxation
to equilibrium using Langevin equation has been attempted in Ref. [5], wherethe authors studied
the early time dynamics of thespinodal decompositionand the effect of dissipation on the spinodal
instability. Further, the bubble nucleation kinetics in chiral transition was studied by Bessa etal
[6]. A time-dependent Ginzburg Landauequation (TDGL) was derived in Ref. [7] starting from a
non-ideal, nonrelativistic hydrodynamics for coupled order parameters. The authors here clarified
the effect of viscosity in the ordering kinetics. Further, Randrup [8], studied the amplification of
the spinodal fluctuation within a fluid dynamical model for the nuclear collisions. Here, the study
was mostly focused on the evolution in the linearized regime which showed an exponential growth
of the initial fluctuations.

Recently, we initiated a study of far-from equillibrium kinetics of chiral phase transition
[9, 10]. Our approach has been are complementary to Refs. [5, 6, 7, 8]. Our study investigates
the late stagesof phase-separation kinetics in quark matter and the scaling properties of emer-
gent morphologies. The system is described by nonlinear evolution equations in this regime: the
exponential growth of initial fluctuations is saturated by the nonlinearity.

To model chiral symmetry breaking in QCD, we use the two-flavor Nambu-Jona-Lasinio (NJL)
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model [11, 12]. The thermodynamic potential in terms of the “constituent" mass Mis given as[9]

Ω̃(M,β ,µ) = − 12
(2π)3β

∫

d~k
{

ln
[

1+e−β(
√

k2+M2−µ)
]

+ ln
[

1+e−β(
√

k2+M2+µ)
]}

− 12
(2π)3

∫

d~k
(

√

k2+M2−k
)

+
M2

4G
, (1)

whereβ = (kBT)−1. Here, we have taken vanishing current quark mass (m= 0), and introduce
M = −2Gρs, with ρs = 〈ψ̄ψ〉 being the scalar density . The NJL model parameters the four
ferion couplingG and the three momentum cutoffΛ are fixed such that the pion decay constant
and the phenomenological values for the quark condensates are reproduced. In the present work,
we have set the three momentum ultra violet cut-offΛ=653.3 MeV and the four fermion coupling
G = 5.02×10−6 MeV−2. With these values the constituent quark mass turns out to beM = 312
MeV. With these parameters chiral symmetry is restored atT ≃ 190MeV at zero density with a
second order phase transition. Similarly a first order transition takes placeat zero temperature for
quark chemical potentialµ ≃ 326.3MeV. In theT−µ plane, the tricritical point lies at(µtcp,Ttcp)=

(282.6,78) MeV where the first order line meets the second order transition line.

The potential in Eq. (1) may be expanded as a Landau potential in the orderparameterM:

Ω̃(M) = Ω̃(0)+
a
2

M2+
b
4

M4+
d
6

M6+O(M8)≡ f (M), (2)

correct up to logarithmic factors [12]. In the following, we consider the expansion ofΩ̃(M) up to
theM6-term. This will be adequate to capture the salient features of the NJL model phase diagram,
as we see shortly. The first two coefficients in Eq. (2) can be obtained bycomparison with Eq. (1)
as

Ω̃(0) = − 6
π2β

∫ Λ

0
dk k2

{

ln
[

1+e−β (k−µ)
]

+ ln
[

1+e−β (k+µ)
]}

,

a=
1

2G
− 3Λ2

π2 +
6

π2

∫ Λ

0
dk k

[

1

1+eβ (k−µ) +
1

1+eβ (k+µ)

]

. (3)

We treat the higher coefficients as phenomenological parameters, which are obtained by fitting
Ω̃(M) in Eq. (2) to the integral expression forΩ̃(M) in Eq. (1) [9]. There are two free parameters
in the microscopic theory (µ andT), so we consider theM6-Landau potential with parametersb
andd. For stability, we required > 0.

The extrema of the potential in Eq. (2) are determined by the gap equation:f ′(M) = aM+

bM3+dM5 = 0. The corresponding solutions areM = 0, andM2
± = (−b±

√
b2−4ad)/(2d). The

phase diagram for the Landau potential is shown in Fig. 1. (A) Forb> 0, the transition is second-
order, analogous to anM4-potential – the stationary points areM = 0 (for a> 0) or M = 0, ±M+

(for a < 0). For a < 0, the preferred equilibrium state is the one with massive quarks. (B) For
b < 0, the solutions of the gap equation are as follows: (i)M = 0 for a > |b|2/(4d), (ii) M = 0,
±M+, ±M− for |b|2/(4d) > a > 0, and (iii) M = 0, ±M+ for a < 0. A first-order transition
takes place atac = 3|b|2/(16d) with the order parameter jumping discontinuously fromM = 0 to
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Figure 1: Phase diagram for the Landau free energy in in the [b/(dΛ2),a/(dΛ4)]-plane. A line of first-order
transitions (I) meets a line of second-order transitions (II) at the tricritical point (tcp), which is located at
a= b= 0. The equations for I and II are specified in the figure. The dashed lines denote the spinodalsS1

andS2, whose equations are also provided. The typical forms of theLandau potential in various regions
are shown in the figure. The asterisk denotes the point where we quench the system forb < 0 (first-order
quench). The second-order quench studied here correspondsto b/(dΛ2) = 1.269,a/(dΛ4) = −0.225, and
is not shown in the figure for clarity.

M = ±M+ = ±(3|b|/4d)1/2. The tricritical point is located atbtcp = 0, atcp = 0. The dotted lines
in Fig 1 denote the spinodals S1 and S2, with equationsaS1 = 0 andaS2 = |b|2/(4d).

Next, let us study dynamical problems in the context of the above a heavy-ion collision. If the
evolution is slow compared to the typical equilibration time, the order parameter field will be in
local equilibrium. On the otherhand, if the expansion is fast enough, the field configuration will not
be in thermal equllibrium and will lag in the sense that it will find itself in a more disordered state
than the equllibrium configuration. We consider a system which is renderedthermodynamically
unstable by a rapid quench from the massless phase to the massive phase inFig. 1. The unstable
massless state evolves via the emergence and growth of domains rich in the preferred massive phase
[14, 15]. Ther has been extensive study on such far from equllibriumdynamics and domain growth
processs in the areas of condensed matter systems like magnets, alloys, fluids, liquid crystals as
well as superconductors. However, equally fascinating problems are associated with kinetics of
phase transitions associated in high energy physics and cosmology [16].

The coarsening system is inhomogeneous, and we account for this by including a surface
tension term in the Landau free energy:

Ω[M] =
∫

d~r

[

a
2

M2+
b
4

M4+
d
6

M6+
K
2

(

~∇M
)2
]

. (4)

It is customary to model the kinetics by the TDGL equation, which models the overdamped
(relaxational) dynamics of an order-parameter field to the minimum of the potential in Eq. (4),i.e.
the system is damped towards the equllibrium configuration. The resulting evolution equation is a
first order time derivative for the order parameter field. We have studiedthe ordering dynamics of
such a TDGL model in Ref. [9].
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However, a microscopic derivation of the kinetic equation in a relativistic fieldtheory using,
e.g., theclosed-time-path Green’s function(CTPGF) formalism results in a second-order stochastic
equation. Such a derivation has been done for scalar field theories [17, 18, 19]. A second-order
TDGL equation has also been derived for the NJL model by Fu et al. [20]using the CTPGF
method. More recently, a Langevin equation with an inertial term has been derived for the chiral
order parameter field in a sigma model by Nahrgang et al. using an influence-functional method
[21]. This model has been used to discuss the relaxational dynamics of theorder parameter near
the critical point [22, 23]. Such a second order time derivative term, called an ’intertial term‘, is
usually neglected in comparison to the damping term which is first order temporal derivative of the
order parameter field. Given this background, it is relevant to investigatethe effect of an inertial
term on the ordering kinetics of the chiral transition. More generally, it is important to study the
effect of an inertial term in domain growth problems. In spite of the intense interest in this area,
this question has received almost no attention [14, 15]. We will address thisissue in the context of
chiral transitions in the present work [10].

Thus, we consider a system whose evolution is described by the TDGL equation with an
inertial term:

∂ 2

∂ t2M(~r, t)+ γ̄
∂M
∂ t

=− δΩ [M]

δM(~r, t)
+θ (~r, t) , (5)

where γ̄ is the dissipation coefficient. Here,θ(~r, t) is the noise term satisfying the fluctuation-
dissipation relation (kB = 1):

〈θ (~r, t)〉 = 0,

〈θ(~r ′, t ′)θ(~r ′′, t ′′)〉 = 2γ̄Tδ (~r ′−~r ′′)δ
(

t ′− t ′′
)

. (6)

We use the natural scales of order parameter, space and time to introduce dimensionless variables:

M = M0M′, M0 =
√

|a|/|b|,
~r = ξ~r ′, ξ =

√

K/|a|,
t = τt ′, τ = 1/

√

|a|,
θ = (|a|3/2/|b|1/2) θ ′. (7)

Dropping the primes, we obtain the dimensionless TDGL equation:

∂ 2M
∂ t2 + γ

∂M
∂ t

=−sgn(a)M−sgn(b)M3−λM5+∇2M+θ (~r, t) , (8)

whereγ = γ̄/
√

|a|, sgn(x) = x/|x|, andλ = |a|d/|b|2 > 0. The dimensionless noise satisfies
〈

θ(~r ′, t ′)θ(~r ′′, t ′′)
〉

= 2εδ (~r ′−~r ′′)δ
(

t ′− t ′′
)

,

ε =
γT|b|

|a|(5−d)/2Kd/2
, (9)

whered is the spatial dimensionality.
Our results in this letter are presented in dimensionless units of space and time. To obtain

these in physical units, one has to multiply by the appropriate dimensional quantities ξ and τ.
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For this, we need to estimate the strength of the interfacial energyK. The surface tension can
be calculated asσ =

√
K(|a|3/2/|b|)∫ dz(dMs/dz)2, whereMs(z) is the static kink solution of

Eq. (8) with θ = 0. For quark matter,σ is poorly known and varies from 10-100 MeV/fm2 at
small temperatures [24]. On the other hand, recent estimates using effective models [25] like the
NJL model and the Polyakov loop-quark-meson model suggest a lower value for surface tension:
σ ≃ 5−20 MeV. We takeσ ≃ 10 MeV/fm2.. For T = 10 MeV andµ = 321.75 MeV, we then
estimateξ =

√

K/|a| ≃ 0.56 fm andτ = 1/
√

|a| ≃ 5.1 fm [9]. Let us first study the early time
behavior of the deterministic version of Eq. (8) (θ = 0). We linearize it around an extremum point
M̄ by replacingM(~r, t) = M̄+φ(~r, t). In Fourier space, the linearized equation becomes

∂ 2

∂ t2 φ(~k, t)+ γ
∂
∂ t

φ(~k, t)+(−α +k2)φ(~k, t) = 0, (10)

whereα = − f ′′(M̄). We haveα > 0 whenM̄ is a local maximum, andα < 0 whenM̄ is a local
minimum. Equation (10) is a homogeneous second-order differential equation, and one can write
the general solution as

φ(~k, t) = A1eΛ+(~k)t +A2eΛ−(~k)t ,

Λ±(~k) =
−γ ±

√

γ2+4(α −k2)

2
. (11)

HereA1 andA2 are constants. In the absence of dissipation (γ = 0), we have

Λ± =±
√

α −k2. (12)

First, consider the caseα > 0. There is an instability for short wavelengths (k <
√

α) with
Λ+(~k) > 0. Thus, there is an exponential growth of fluctuations about a local maximum of the
free energy. This is valid even in the limit of no dissipation. Forα < 0, there is no instability and
fluctuations are exponentially damped. The damping is relaxational fork2 < (γ2− 4|α |)/4, and
oscillatory fork2 > (γ2−4|α |)/4. In the limit of no dissipation, the dynamics is purely oscillatory.

We study the phase transition kinetics for two different quench possibilities.First, we consider
deep quenches through II (b > 0) from a > 0 (with M = 0) to a < 0, where the free energy has
a double-well structure. Let us note here that we are quenching far below the line of second
order transitions. The chirally-symmetric phase is now unstable, and evolves to the stable massive
phase via spinodal decomposition. In our simulations of this case, we have used Eq. (8) with
a< 0,b> 0,λ = 0.14, corresponding to(µ ,T) = (231.6 MeV, 85 MeV) [9]. The appropriate form
of the evolution equation is

∂ 2M
∂ t2 + γ

∂M
∂ t

= M−M3−λM5+∇2M+θ (~r, t) . (13)

We solve Eq. (13) numerically using a simple Euler-discretization scheme with initial velocity
∂M/∂ t|t=0 = 0. The initial state of the system is prepared asM(~r,0) = 0±δM(~r,0), whereδM is
uniformly distributed in [−0.25,+0.25]. This mimics the physical situation where small amplitude
fluctuations are always present. Even if we start with a uniform initial state,thermal noise rapidly
generates random fluctuations.

6
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Our numerical simulations are performed on ad= 3 lattice of sizeN3 (N= 256), with periodic
boundary conditions in all directions. The discretization mesh sizes are∆x = 1.0 and∆t = 0.1,
obtained from the linear stability analysis of Eq. (13) [26, 27]. We requirethat the Euler scheme
must respect the stability properties of the homogeneous solutions of Eq. (13). The thermal noise
θ(~r, t) is mimicked by uniformly-distributed random numbers between[−An,An]. In studies of
phase-transition kinetics, it is known that statistical results are unchangedwhether we use Gaussian
noise or uniformly-distributed noise [26, 32]. The appropriate noise amplitude in our simulation is
[28]

An =

√

3ε
(∆x)d∆t

. (14)

The results reported here correspond toε = 0.008, i.e.,An = 0.5. All statistical quantities are
obtained as averages over 10 independent runs.

Figure 2: Domain growth forγ = 0.0,1.0 after a quench through the second-order line (II) in Fig. 1.The
snapshots show regions withM ≃+M+ (marked red),M ≃ 0 (marked yellow), andM ≃−M+ (marked blue)
at t = 20,100.

In Fig. 2, we show the ordering dynamics of Eq. (13) from a disorderedinitial state. To study
the effect of inertia, we choseγ = 0.0 (upper frames) and 1.0 (lower frames). The system rapidly
evolves into domains of the massive phase withM ≃ M+ (marked red) andM ≃ −M+ (marked
blue). The snapshots show the evolution att = 20,100. Forγ = 0, the dissipative term is absent,
and we observed a rapid growth of domains (see the pattern att = 20). After the initial rapid growth,
domain walls get fuzzier, and domains become less distinctive due to the oscillatory behavior of
the system. We have also studied the time-dependence of the order-parameter value at a few spatial
points in theγ = 0 case. We observe the occurrence of flips from±M+ → ∓M+ on extended

7
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time-scales. In spite of these, the domain morphology continues to coarsen asthese oscillations are
cooperative. Forγ = 1, the dissipative term is dominant and the ordering dynamics is analogous to
that for the overdamped case [9].

0 2 4 6 8
r/L

0

0.2

0.4

0.6

0.8

C
(r

,t)

γ = 0.0
γ = 0.4
γ = 1.0
OJK

Figure 3: Plot of the scaled correlation function,C(r, t) vs. r/L, for γ = 0,0.4,1.0 at t = 20. The length
scaleL(t) isa defined as the distance over which the correlation function decays to half its maximum value
[C(r, t) = 1 atr = 0]. The solid line denotes the OJK function in Eq. (17).

1 4 16 64 256
t

1

4

16

L
(t

)

γ = 0.0
γ = 0.3
γ = 0.6
γ = 1.0

1/2

1

Figure 4: Time-dependence of domain size,L(t) vs. t, for the evolution depicted in Fig. 2. There is a
crossover attc ∼ γ−1 from an early-time inertial growth [L(t) ∼ t(ln t)1/2] to a late-time Cahn-Allen (CA)
growth [L(t)∼ t1/2].

The system is characterized by a single length scaleL(t) as the pattern morphology does
not change in time apart from a scale factor. The morphology is quantitatively studied using the
correlation function[15]:

C(~r, t) =
1
V

∫

d~R
[〈

M(~R, t)M(~R+~r, t)
〉

−
〈

M(~R, t)
〉〈

M(~R+~r, t)
〉]

. (15)

Here,V denotes the volume of the system, and the angular brackets denote an average over inde-
pendent runs. The evolution morphologies are isotropic, so we compute thespherically-averaged
correlation functionC(r, t) with r = |~r|. The existence of the characteristic scale results in ady-
namical scalingof the correlation function:

C(r, t) = g[r/L(t)] . (16)
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We have confirmed numerically (not shown here) that the correlation functions at different
times obey dynamical scaling for differentγ-values. In Fig. 3, we plot the scaled correlation func-
tion,C(r, t) vs. r/L, for γ = 0,0.4,1.0 att = 20. The length scaleL(t) is defined as the distance over
which the correlation function decays to half its maximum value [C(r, t) = 1 atr = 0]. Notice that
the scaling functions are numerically indistinguishable showing that the evolution morphologies
are the same for different values ofγ. The solid line denotes the Ohta-Jasnow-Kawasaki (OJK)
function [29, 30]:

gOJK(x) =
2
π

sin−1
(

e−x2/2
)

, (17)

which characterizes ordering dynamics for theM4-potential in the overdamped limit, i.e., without
inertial terms. Clearly, our numerical data is well-described by the OJK function.

In Fig. 4, we plotL(t) vs. t on a log-log scale for several values ofγ. As usual,L(t) shows a
power-law behavior [L(t)∼ tφ ], but there is a distinct crossover in the exponentφ asγ is varied.

This can be understood by considering the deterministic version (θ = 0) of Eq. (13), which
leads to the domain growth equation as[10]

d2L
dt2

+ γ
dL
dt

=
σ
L
, (18)

whereσ/L is identified as the curvature for a domain of sizeL. At short times (t ≪ tc), the growth
law is fixed by the inertial term as [31]

L(t)∼
√

σ t
[

ln(
√

σ t)
]1/2

. (19)

The long-time (t ≫ tc) kinetics is determined by the dissipative term as

L(t)∼
(

σ t
γ

)1/2

, (20)

which is the usual Cahn-Allen (CA) growth law [15]. The crossover time scales astc ∼ γ−1. In
Fig. 4, we have plotted straight lines corresponding toL(t) ∼ t andL(t) ∼ t1/2, the two limiting
behaviors of the growth law.

Next, we consider shallow quenches through I to the point marked by a asterisk in Fig. 1. This
case is studied using Eq. (8) witha> 0,b< 0,λ = 0.14, which is equivalent to(µ ,T) = (321.75
MeV, 10 MeV) [9]. The corresponding kinetic equation is

∂ 2M
∂ t2 + γ

∂M
∂ t

=−M+M3−λM5+∇2M+θ (~r, t) . (21)

The initial state with massless quarks (M = 0) is now a metastable state of the potential, and
phase separation proceeds via nucleation and growth of droplets ofM = ±M+. Therefore, the
thermal noiseθ(~r, t) must be sufficiently large to enable the system to escape from the metastable
state on a reasonable time-scale: a suitable value forλ = 0.14 isε = 0.6. However, the asymptotic
behavior of domain growth in both the unstable and metastable cases is insensitive to the noise term
[32].
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Figure 5: Analogous to Fig. 2 but for a shallow quench through the first-order line (I) in Fig. 1 . Notice that
the metastable patches (M ≃ 0, marked yellow) att = 20 are absent at later times.

In Fig. 5, we show the ordering kinetics of Eq. (21) forγ = 0.25,0.5. Typically, the evolution
of the system begins with the nucleation of droplets in the early stages: droplets larger than a
critical sizeRc (supercritical) grow, whereas those withR< Rc (subcritical) shrink. In the present
simulation, the critical radius of the bubbleRc ≃ 8 dimensionless units. If we convert this into
physical units,Rc ≃ 4.5 fm.

The droplets grow very rapidly and fuse to form bi-continuous domain structures, a charac-
teristic of late-stage domain growth. The effect of dissipation on nucleation and growth can be
understood by comparing the evolution patterns at differentγ-values. The system takes more time
to nucleate for extremeγ-values (i.e.,γ → 0 andγ → ∞). To understand this behavior, we follow
Hanggi’s discussion [33] ofKramer’s escape problemfor a barrier. Hanggi studies the crossover
time fromM = 0 (the metastable state) toM = M+ (the stable state) in the homogeneous version
of Eq. (21). This crossover time is proportional to the nucleation timetn in our domain growth
problem. We designateωb as the natural vibration frequency about the barrier location (M−). For
moderate to large dissipation (γ ≫ ωb), the nucleation time

tn ∼
(
√

γ2

4
+ω2

b −
γ
2

)−1

, (22)

10
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so thattn ∼ γ asγ → ∞. For small dissipation (γ ≪ ωb), we have

tn ∼
1
γ
, (23)

so thattn → ∞ asγ → 0.

0.2 0.4 0.6
γ
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γ = 0.40
γ = 0.50
γ = 0.60

1/2

Figure 6: Time-dependence of the domain size,L(t) vs. t, for nucleation and growth with differentγ-
values. There is no growth in the early stages when droplets are being nucleated. The asymptotic growth is
consistent with the CA growth law,L(t)∼ t1/2. The inset shows theγ-dependence of the nucleation timetn
for the onset of domain growth.

In Fig. 6, we plot the domain size [L(t) vs. t] on a log-log scale: the growth process begins
once the nucleation of droplets is over. The onset time for domain growth is thenucleation timetn,
which is shown in the inset of Fig. 6 for different values ofγ. Notice thattn →∞ asγ → 0 orγ →∞,
as expected. The intermediate and asymptotic growth regimes are similar to those described for
spinodal decomposition, i.e., a crossover fromL(t) ∼ t(ln t)1/2 to L(t) ∼ t1/2. In Fig. 6, we have
focused on theγ-dependence oftn, rather than the asymptotic growth laws.

In summary, we have studied the kinetics of chiral phase transitions in QCD subsequent to
sudden changes in system parameters. To understand the kinetics, we must first obtain the phase
diagram. In terms of the quark degrees of freedom, the phase diagram is obtained in the(µ ,T)-
plane using the Nambu-Jona-Lasinio (NJL) model [9]. An equivalent coarse-grained description is
obtained from anM6-Landau free energy.

The chiral kinetics is modeled via the nonlinear TDGL equation with dissipation and noise,
and we consider both the overdamped [9] and inertial cases [10]. We study quenches through the
first-order (I) or second-order (II) transition lines in Fig. 1. For quenches through II and deep
quenches through I, the massless phase is spontaneously unstable and evolves to the massive phase
via spinodal decomposition. For shallow quenches through I, the masslessphase is metastable
and the chiral transition proceeds via the nucleation and growth of dropletsof the massive phase.
The merger of these droplets results in late-stage domain growth similar to that for the unstable
case. In all cases, the asymptotic growth process exhibits dynamical scaling, and the growth law is
L(t)∼ t1/2. The inertial term gives a pre-asymptotic regime of faster growth withL(t)∼ t(ln t)1/2,
and the crossover time tot1/2-growth scales astc ∼ γ−1, whereγ is the dissipation constant.

In the context of heavy-ion collisions, given the uncertain values of dimensional quantities for
quark matter (e.g., surface tension, dissipation), it is not clear whether thesystem equilibrates com-
pletely within the life-time of the fireball. If the system is almost equilibrated, the features of the
coarsening morphology are similar for quenches through both first- and second-order lines in the
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phase diagram. However, if the equilibration time-scale is much larger than the fireball life-time,
the morphology is very different for quenches through the first-orderline, with the system evolving
through nucleation of droplets. The signatures of such a quench through first-order transition are
experimentally relevant because they imply the existence of a critical end point (CEP) in the QCD
phase diagram. As a matter of fact, experimental studies of such signaturesmay be more conve-
nient than directly searching for the CEP via critical fluctuations. To date, the latter approach has
not provided conclusive evidence of the existence of a CEP, presumably due to the smallness of the
critical region.
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