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1. Introduction

The two lightest quarks, the up and the down, have different masses and different electric
charges. Nevertheless, their mass difference is much smaller than a typical hadronic scale (ΛQCD)
and electromagnetic interactions are much weaker than strong interactions1,

m̂d− m̂u

ΛQCD
� 1 , (eu− ed)e f α̂em� 1 . (1.1)

For this reason isospin, the group of SU(2) flavour rotations in the up-down space, is a mildly bro-
ken symmetry and a very useful theoretical tool. For example, thanks to isospin symmetry hadrons
can be classified according to the representations of angular momentum algebra, hadronic scatter-
ing processes can be studied separately in different “isospin channels”, the neutral pion two-point
correlator has no disconnected diagrams and, on the algorithmic side, unquenched simulations with
light Wilson fermions are possible without reweighting because2

det(D[U ]+mud) det
(
D[U ]† +mud

)
> 0 . (1.2)

Isospin breaking is a small effect but generates a rich phenomenology, for example chemistry.
The hydrogen atom is stable because Mn−Mp > Me and the electron capture reaction p + e 7→
n + νe is forbidden. As discussed in the following, the separation of QCD from QED isospin
breaking corrections is unphysical and depends upon the renormalization conditions. By choosing
a “natural” prescription one has that the neutron is heavier than the proton thanks to a delicate
balance between two opposite contributions of the same order of magnitude, (Mn−Mp)QED < 0 <

(Mn−Mp)QCD, see Figure 9. Other interesting examples of phenomena that originate from the
breaking of isospin symmetry are the mixings and the decay patterns of neutral mesons or the more
recent puzzle of the flavour structure of the “new” X ,Y,Z hadrons [1].

In flavour physics there are observables that have been computed on the lattice in the isosym-
metric limit with very high accuracy. According to the FLAG2 average [2], we know the ratio3

FK/Fπ and the zero recoil form factor FKπ
+ (0) with an accuracy of ∼ 0.4%. QCD isospin breaking

effects on these quantities have been estimated in chiral perturbation theory [3, 4] and are expected
to be ∼ −0.2% for the ratio of decay constants and as large as 3% for the form factor. We are
rapidly approaching a situation in which it will be useless to put efforts in further reducing the
uncertainty on isosymmetric hadronic observables if isospin breaking effects (IBE) are not taken
into account from first principles.

2. QCD+QED on the lattice

The IBE associated with electromagnetic interactions are as important as the effects associated
with the up-down mass splitting. This means that in order to have an in impact on phenomenology

1m̂u and m̂d are the up and down renormalized quark masses, α̂em ' 1/137 the fine structure constant and e f the
fractional electric charge of the f quark, i.e. eu,c,t = 2/3 and ed,s,b =−1/3.

2D[U ] is the massless Wilson lattice Dirac operator depending on the QCD gauge fields Uµ (x) and mud = (mu +
md)/2 is the average up-down bare quark mass.

3FK and Fπ are the kaon and pion decay constants in the isosymmetric limit while FKπ
+ (q2) is the form factor

entering the semileptonic decay rate of a kaon into a pion in the isosymmetric limit (FKπ
+ = FK0π−

+ =
√

2FK+π0

+ ).
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lattice calculations of IBE require simulations of what we call the full theory4, i.e. QCD+QED.
Full theory observables are defined in terms of the following path-integral average5

~g =
(

e2,g2
s ,mu,md ,ms

)
, 〈O〉~g =

∫
dAe−S[A] dU e−βS[U ]

∏ f det(D f [U,A;~g]) O[U,A;~g]∫
dAe−S[A] dU e−βS[U ] ∏ f det(D f [U,A;~g])

.

(2.1)

The direct generation of QCD+QED gauge configurations is possible, in principle, with lattice
fermion actions such that the determinant of the single flavour is real and positive-definite. In
practice this procedure would be too expensive or at least unpractical. It is much more efficient to
re-use the gauge configurations generated in the isosymmetric theory6,

~g0 =
(

0,(g0
s )

2,m0
ud ,m

0
ud ,m

0
s

)
, 〈O〉~g0

=
∫

dU e−β 0S[U ]
∏ f det

(
D f [U ;~g0]

)
O[U ;~g0]∫

dU e−β 0S[U ] ∏ f det(D f [U ;~g0])
.

(2.2)

This can be done by introducing the “QED path-integral average” and a reweighting factor

〈O〉A =
∫

dA e−S[A] O[A]∫
dA e−S[A] , R[U,A;~g,~g0] = e−(β−β 0)S[U ]

∏
f

det(D f [U,A;~g])
det(D f [U ;~g0])

, (2.3)

and by writing 〈O〉~g as follows

〈O〉~g =

〈
R[U,A;~g,~g0] O[U,A;~g]

〉A,~g0〈
R[U,A;~g,~g0]

〉A,~g0 . (2.4)

The formulae above and the numerical calculations are much more simple in the so-called “elec-
troquenched” approximation, i.e. by considering sea quarks as electrically neutral particles. This
“rough” approximation leads to a non-unitary theory and is obtained by setting

R[U,A;~g,~g0] 7→ 1 . (2.5)

Electroquenched QED ensembles can be obtained easily and efficiently with heat-bath algorithms.
The first pioneering lattice calculation of IBE has been performed in ref. [5] by relying on the

electroquenched approximation. In that reference and also in the more recent works on the subject
QED has been simulated in the non-compact formulation: the gauge potential Aµ(x) is a dynamical
variable and the QCD+QED links are obtained by exponentiation,

Uµ(x) 7→ eie f eAµ (x) Uµ(x) . (2.6)

Imposing periodic boundary conditions for the gauge potential and a gauge fixing (here Feynman),

∇
−
µ Aµ(x) = 0 , S[A] =

1
2 ∑

x
Aµ(x)

[−∇
−
ν ∇

+
ν

]
Aµ(x) , (2.7)

4We call isosymmetric theory QCD with the masses of the up and of the down set equal to the common value mud .
5The bare parameters of the full theory (ignoring heavy flavour masses) are collected in the vector ~g; β = 6/g2

s ;
Aµ (x) is the photon field, the dynamical variable in the non-compact formulation of QED (see below); D[U,A;~g] is the
preferred discretization of the Dirac operator.

6The vector ~g0 collects the bare parameters of the isosymmetric QCD.
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2

variable U for the gluon field and fermion field ψ. In or-
der to illustrate the reweighting method, we consider the
system with a fermion action Sf [ψ̄,ψ, Ũ ] = −ψ̄D[Ũ ]ψ,

where Ũ is the combined SU(3)× U(1) gauge link vari-
able associated with a quark with EM charge qe;

Ũ = UeiqeA. (4)

Here, we assume the photon fields are generated by a
non-compact U(1) photon action;

SU(1)[A] =
1

4

∑

x

∑

µ,ν

(∂µAν(x)− ∂νAµ(x))
2 . (5)

In this study the fine structure constant of QED is set
to be αEM = e2/(4π) = 1/137. An expectation value for
some observable O in fQED+fQCD is formally related to
the one in qQED+fQCD, in which the photon fields in
the quark determinants are neglected, via

〈O〉fQED+fQCD =
〈wO〉qQED+fQCD

〈w〉qQED+fQCD
, (6)

introducing a reweighting factor [8],

w[Ũ , U ] =
det(D[Ũ ])

det(D[U ])
. (7)

The determinants in Eq. (7) are calculated by a stochas-
tic estimate with random Gaussian noise vectors. Since
the distribution of w has a long tail, a naive application
of the stochastic estimator for w could fail [11]. To eval-
uate w safely, breaking up the determinant into many
small pieces is efficient, because the effects of the outliers
are largely suppressed [11, 12]. For the splitting, we use
a mathematical identity for the determinant, so called
the nth-root trick: w = detΩ =

(
detΩ1/n

)n
, which is

easily implemented by the rational approximation [13].
We apply reweighting to 2 + 1 flavor dynamical DWF
and Iwasaki gluon configurations generated by the RBC-
UKQCD collaborations [14]. The configuration set is one
of the ensembles used in the qQED study [4], whose sim-
ulation parameters are βQCD = 2.13, L3 × T × Ls =
163×32×16, inverse lattice spacing a−1 = 1.784(44) GeV,
(amu, amd, ams) = (0.01, 0.01, 0.04). The U(1) photon
fields, which have been already generated in the qQED
study, are combined with the gluon configurations ac-
cording to Eq. (4). We also employ n = 24 roots and use
4 complex random Gaussian noise vectors per root on
each configuration to estimate the reweighting factors.
Fig. 1 shows the obtained factors normalized by the con-
figuration average. The fluctuation among configurations
is moderate, controlled within a factor of ∼ 5.
DWF’s explicitly break chiral symmetry due to finite

size Ls in the extra 5th dimension which can be quanti-
fied by an additive, residual, quark mass for each flavor.
In the chiral limit, amres(QCD) = 0.003148(46) for the en-
semble used in this study. The qQED studies [3, 4] show
that the valence EM charges further shift the quark mass

1000 2000 3000 4000
Hybrid MC trajectory

0

5 normalized reweighting factor

FIG. 1. Normalized reweighting factor w[Ũ , U ] with the EM
charge es = e on each gluon configuration.

by an amount of O(αEMamres(QCD)). The same effect
also arises from the sea quark charges. This lattice arti-
fact induces a term like e2sδrestrQ

2
s(3) in the SU(3) ChPT

formula (1). (Similar modifications are also needed in
the SU(2) formula (3).) Here we measure the sea EM
charge contribution to the residual mass and subtract it
from ∆M2

PS.
Due to finiteness of gauge configurations, contributions

arise from “hair”, or photon emission to, and absorption
from, the vacuum which averages to zero in the large
ensemble limit. In Ref. [3], it was shown that this hair is
a large source of noise in hadron correlators. The leading
unwanted piece can, however, be removed by averaging
over plus and minus EM charges, the so-called ±e trick,
and it provides a great advantage in which the unphysical
noise is exactly canceled in the valence sector [3, 4];

1

2
{O(+ev) +O(−ev)} = O(e2v), (8)

where O(ev) represents some observable with a valence
EM charge ev. There is also “hair” in the sea sector. To
remove the leading contribution from both the sea and
valence sectors, we use an averaging,

1

2
{O(+es,+ev) +O(−es,−ev)} = O(e2s , esev, e

2
v), (9)

in the reweighting. Note that the noise from hair associ-
ated with es is already small by virtue of Eq. (2).
Using the reweighting factor obtained in this work

and the meson correlators in the qQED study [4], the
reweighted meson correlators are obtained by Eq. (6).
An example of effective mass for the π+ meson is shown
in Fig. 2. For the χ2 fit results of the masses, we take the
same fit range (t = 9−16) as in Ref. [4] and also perform
both correlated (corr) and uncorrelated (uncorr) fits in
t. (Changing the fit range does not alter results beyond
the current statistical error.) To study the properties of
the data, we show jackknife samples of fit masses from
Fig. 2 in Fig. 3. Fig. 3 indicates that the statistical fluctu-
ation comes mostly from QCD and that significant corre-
lations exist between the charged and non-charged data.
These facts enable us to detect the qQED and fQED ef-
fects. With the reweighted data of the meson masses
calculated, chiral fits are performed to obtain the QED
LECs in Eqs. (1) and (3). Although C is known from
the qQED study [4], it provides a valuable consistency

3
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FIG. 2. An example of effective mass for the π+ meson
in non-QED(black), qQED(red) and fQED(blue) with am1 =
am3 = 0.01. The χ2 fit results of the masses with uncorrelated
fit in t are denoted by the horizontal lines. In fitting the fQED
data, χ2/d.o.f.(uncorr) = 0.11 and χ2/d.o.f.(corr) = 0.67.

0 10 20 30 40 50 60
jackknife sample

0.43

0.435

m
 (

G
e

V
) non-QED

     qQED

      fQED

FIG. 3. Jackknife data of fit masses of Fig. 2 (uncorr).

check with the qQED result. In fitting for the LECs, we
anticipated a problematic hierarchy between the e2s and
esev terms, attributable to a double suppression factor in
the latter,

m1 −m3

m1 +m3
tr(Qs(3)Ms(3))

m

ΛQCD
, (10)

leaving the esev terms unresolved, where

Ms(3) =
1

m
diag(m4,m5,m6), m =

m4 +m5 +m6

3
. (11)

Although the difficulty can, in principle, be overcome
with enormous statistics, drastic improvements are pro-
vided by engineering sign flips in the EM charge. Besides
the ±e trick (Eqs. (8) and (9)), consider a basic transfor-
mation

T1 : (m1, q1;m3, q3) −→ (m3, q3;m1, q1), (12)

under which the meson system is invariant (CPT ). In
addition to T1, let us introduce transformations:

T2 : (m1, q1;m3, q3) −→ (m1,−q1;m3,−q3), (13)

T3 : (m1, q1;m3, q3) −→ (m3,−q1;m1,−q3). (14)

Eqs. (12)-(14) form a set of transformations that ex-
change two valence quark masses and EM charges with,
or without, flipping the sign of ev. Note that T2 and
T3 yield only partial invariances of Eqs. (1) and (3), in
the sense that the invariance holds only for specific terms
in each. In Tab. I, the transformation property of each
term in NLO PQChPT is summarized. While the e2s and
esev terms retain their even and oddness under T1 and T2
to all orders in quark mass, the transformation property
under T3 is not preserved at order higher than O(am) in
the quark mass expansion. At NLO in SU(2) PQChPT
in formula (3), the esev term is a mixture of even and

TABLE I. Transformation property under Eqs. (12)-(14) for
individual terms in NLO SU(3) and SU(2) PQChPT.

terms in NLO PQChPT associated with
transformation Y1, Y

′

1 , Y
′′

1 C, J , J ′ K, K′

T1 (Eq. (12)) even even even
T2 (Eq. (13)) even odd odd
T3 (Eq. (14)) even even odd

TABLE II. QED low-energy constants with µ = Λχ = 1 GeV.
Y1 is defined as Y1 = Y1trQ2

s(3) for SU(3) ChPT and Y1 =

Y1trQ2
s(2) + Y ′

1(trQs(2))
2 + Y ′′

1 q6trQs(2) for SU(2) ChPT. J
and K depict J = JtrQs(2) + J ′q6 and K = KtrQs(2) +K′q6,
respectively. The qQED values for C are quoted from Ref. [4],
whose values are obtained from 243×64 lattice and by infinite
volume ChPT formula. The values of B0 and F0 used in the
chiral fit are quoted from Ref. [7].

SU(3) ChPT SU(2) ChPT
uncorr corr uncorr corr

107C (qQED) 2.2(2.0) – 18.3(1.8) –
107C 8.4(4.3) 8.3(4.7) 20(14) 15(21)
102Y1 -5.0(3.6) -0.4(5.6) – –
102Y1 -3.1(2.2) -0.2(3.4) -3.0(2.2) -0.2(3.4)
104J – – -2.6(1.6) -3.3(2.8)
104K – – -3.1(6.9) -3.7(7.8)

odd contributions since the three-flavor feature (2) is ex-
plicitly broken. By adding and subtracting squared me-
son masses related by these transformations, each term
can be separately extracted and individually fit. Note
that we need at least three different sets of sea quark
EM charges to fully determine the fQED LECs using
the SU(2) ChPT; otherwise we only know their linear
combinations (see Tab. II). A useful choice would be:
[trQs(2) = 0, ∀q6], [trQs(2) #= 0, q6 = 0] and [trQs(2) #= 0,
q6 #= 0].
Figs. 4-9 show individual sea-quark charge contribu-

tions to the pion mass-squared, e2s , esev(T3-even) and
esev(T3-odd) parts. The lattice artifact ingredient, which
is caused by the finiteness of Ls, is subtracted from the
e2s term. In the figures, we can clearly see that the hi-
erarchy between the e2s and esev terms is O(102), as ex-
pected by the suppression given by Eq. (10), and the sep-
aration using the transformation T2 successfully works.
The valence EM charge dependence is constant for the
e2s term and linear for the eves terms, as expected from
the smallness of the fine structure constant in QED. We
perform uncorrelated chiral fits for the e2s , esev(T3-even)
and esev(T3-odd) terms separately setting µ to the chiral
scale Λχ = 1 GeV and obtain the LECs in Tab. II. In this
fit, we choose a minimal set of data with smaller valence
quark masses, and ignore q6 dependence in B0 because
of smallness of e2 and Y1. We also neglect finite volume
effects which could give significant shifts in the EM mass
spectrum. However, we remark that our quarks are rel-
atively heavy even though our lattice is small. Although

Figure 1: Left: fluctuations of the reweighting factor. Right: effective mass of a pseudoscalar meson extracted on
the same QCD gauge background in the isosymmetric theory (black), in the electroquenched theory (red) and in the full
theory (blue). Both the figures are taken from Ishikawa et al. [8], see this reference for further details.

the QED gauge action has a zero mode and the photon propagator is infrared divergent. Fur-
thermore, the Gauss law is inconsistent (see for example ref. [6]). Both problems are solved by
subtracting the zero momentum mode, a residual gauge ambiguity associated with any derivative
gauge fixing,

0 = ∇
−
µ Aµ(x) = ∇

−
µ

[
Aµ(x)+ c

]
. (2.8)

It can be shown that this infrared regularization changes physical quantities by finite volume effects,
there are no new ultraviolet divergences to cope with. Note that QED is a long range unconfined
interaction and (large) finite volume effects are unavoidable. The infrared regularized QED ac-
tion can be written directly in coordinate space, without the need of (fast) Fourier transforms, by
introducing a suitable projector [7]

P⊥φ(x) = φ(x)− 1
V ∑

y
φ(y) , S[A] 7→ 1

2 ∑
x

Aµ(x)
[−∇

−
ν ∇

+
ν

]
P⊥ Aµ(x) . (2.9)

Recently Ishikawa et al. [8] and the PACS-CS collaboration [9] have demonstrated the feasi-
bility of simulations of the full theory beyond the electroquenched approximation. In both these
works the physical volumes are of the order of 3 fm and the reweighting factor, see eq. (2.3), has
been split into several factors with controllable statistical fluctuations. Ishikawa et al. factored R by
using the nth-root trick while the PACS-CS collaboration used a mass-charge preconditioning. The
plots in Figure 1 are taken from ref. [8] but similar plots can be found in ref. [9] (see also ref. [10]).
In the left panel it is shown the HMC history of the reweighting factor normalized by its average.

When QED interactions are introduced through reweighting and simulations are performed
at the physical value of the electric charge the resulting IBE are typically smaller than statistical
errors, see the right panel in Figure 1. In ref. [8] it is observed that IBE can however be calculated
by relying on the strong statistical correlations between the different data sets (black, red and blue)
that share the same QCD gauge background. In fact physics is associated with the full theory and,
although interesting and possibly convenient from the numerical point of view, there is no need
to consider the difference between isosymmetric and full theory results. This is an important and
subtle point that we are now going to discuss in some detail.

3. Calibration of the lattice: QCD vs. QCD+QED

QCD+QED and QCD are two different theories. Electromagnetic currents generate divergent

4
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contributions,

(e f e)2 −→ [m f −m0
f ] ,

Jµ(x)Jµ(0) −→ c1(x)1+∑
f

[
c f

m(x)m f + c f
cr(x)

]
ψ̄ f ψ f + cgs(x)GµνGµν + · · · , (3.1)

that redefine the vacuum energy, c1, the quark masses, c f
m, the quark critical masses (if chirality is

broken), c f
cr, and the strong coupling constant (the lattice spacing), cg. The parameters of the phys-

ical theory, QCD+QED, can be fixed by using a suitable number of experimental inputs. This is the
approach followed by the PACS-CS collaboration in ref. [9] where the experimental determinations
of {Mπ+ ,MK+ ,MK0 ,MΩ−} have been used to tune {m̂u, m̂d , m̂s,a} and, of course, the masses of the
up and of the down were chosen differently. That’s it.

On the other hand it is theoretically interesting and possibly numerical convenient to define
differences as MQCD+QED

H −MQCD
H where MH is the mass of a generic hadron. To this end the

“unphysical” parameters of the isosymmetric theory have to be set by giving a renormalization
prescription. A possibility is to use an hadronic scheme in both theories. One could for example
perform a “standard” QCD simulation and use {Mπ+ ,MK+ ,MΩ−} to fix {m̂0

ud , m̂
0
s ,a

0}. If the pa-
rameters of the full theory are then fixed as done by the PACS-CS collaboration, there would be no
IBE on {Mπ+ ,MK+ ,MΩ−} in this scheme while IBE could be properly defined and calculated for
any other observable.

In ref. [7], see also ref. [11], it has been suggested to define IBE by using an intermediate
renormalization scheme and a matching procedure. To implement this prescription one has to: tune
the full theory bare parameters gi by using experimental inputs; choose a renormalization scheme
(MS or a non-perturbative scheme as SF or RI-MOM) and a matching scale µ?; fix the renormalized
parameters of the isosymmetric theory (α̂em = m̂d − m̂u = 0) by the matching condition ĝ0

i (µ?) =
ĝi(µ?). Note that the renormalized parameters of the two theories, although equal in this scheme
at the scale µ?, are different at any other scale. Naturally, also the bare parameters are different7

g0
i =

Zi(µ?)
Z0

i (µ?)
gi . (3.2)

Once the parameters have been fixed, IBE for any observable can be properly defined as

∆O = O(~g)−O(~g0) . (3.3)

A similar procedure can be used for instance to properly define unquenching effects and to compare
n f = 2+ x with n f = 2+ y lattice results.

In the case of light pseudoscalar meson observables, the matching of QCD+QED with QCD
can be performed by fitting lattice results to analytical formulae derived in chiral perturbation
theory coupled to electromagnetic interactions [12, 6]. All the terms allowed by symmetries are
present in the chiral formulae that can be expressed either in terms of the renormalized parameters
of the full theory or, by a redefinition of the low energy constants, in terms of the renormalized

7Zi(µ) are the renormalization constants of the full theory, ĝi = Zi(µ)gi, while Z0
i (µ) are the renormalization

constant of isosymmetric QCD, ĝ0
i = Z0

i (µ)g0
i .

5
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couplings of isosymmetric QCD. This is the strategy followed in refs. [13, 8, 14] and in previous
works on the subject. Although the matching is somehow “automatic” in this approach, the de-
tails of the renormalization prescriptions have to be specified when quoting results to allow their
comparison with other determinations and with experimental data.

In the following we shall talk about “leading isospin breaking effects” (LIBE). These are
defined by expanding eq. (3.3) in powers of8 gi−g0

i ,

∆O =

{
e2 ∂

∂e2 +
[
g2

s − (g0
s )

2] ∂

∂g2
s
+[m f −m0

f ]
∂

∂m f
+[mcr

f −mcr
0 ]

∂

∂mcr
f

}
O . (3.4)

Note that the counter-terms in the perturbative expansion with respect to α̂em, i.e. in the opera-
tor product expansion of eq. (3.1), do arise because the bare parameters (the renormalization con-
stants) of the two theories are different. Indeed, once expressed in terms of renormalized quantities,
eq. (3.4) becomes

∆O =

ê2 ∂

∂ ê2 +

ĝ2
s −
(

Zgs

Z0
gs

ĝ0
s

)2
 ∂

∂ ĝ2
s
+

[
m̂ f −

Zm f

Z0
m f

m̂0
f

]
∂

∂ m̂ f
+∆mcr

f
∂

∂mcr
f

O . (3.5)

The divergent quantities Zm f /Z0
m f

, ∆mcr
f = mcr

f −mcr
0 and Zgs/Z0

gs
appearing in the previous equation

correspond to the counter-terms c f
m, c f

cr and cgs of eq. (3.1). The electric charge does not need to be
renormalized at this order,

ê2 = e2 = 4πα̂em =
4π

137
, (3.6)

The problem of the renormalization of the electric charge would have to be faced in the calcula-
tion of next-to-leading IBE. From the phenomenological point of view, given the size of the other
hadronic uncertainties, sub-leading IBE can be safely neglected by now. Note that whenever lattice
data are analyzed by neglecting terms of O[α̂em(m̂d− m̂u)] one is actually computing LIBE.

4. LIBE as a perturbation

In refs. [15, 7] it has been shown that LIBE can be calculated efficiently and accurately by
expanding the lattice QCD+QED path-integral of eq. (2.4) in powers of gi−g0

i

O(~g) =

〈 (
1+ Ṙ+ · · ·) (O+ Ȯ+ · · ·) 〉A,~g0〈

1+ Ṙ+ · · · 〉A,~g0 = O(~g0)+∆O . (4.1)

In these references it has been developed a “graphical notation” as a tool to make calculations.
The building blocks of the graphical notation are the corrections to the quark propagator (at fixed
QCD gauge background) shown in Figure 2. A dictionary to translate in local operator language

8Note the absence in eq. (3.4) of terms linear in e and gs (physical observables are QED and QCD gauge invariant)
and the presence of a term proportional to the shift of the critical masses mcr

f −mcr
0 that is needed in theories in which

chirality is broken.
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The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)

G.M. DE DIVITIIS et al. PHYSICAL REVIEW D 00

10

Figure 2: LIBE corrections to the quark propagator (at fixed gauge QCD background) in the graphical notation of
ref. [7]. The contributions contained in the red box are absent in the electroquenched approximation. The contributions
contained in the blue box do not “read” the charge of the valence quarks and are therefore isosymmetric.

Figure 3: Example of a non-factorizable diagram contributing to the physical leptonic decay rate at O(α̂em). In
general, the sum of factorable contributions is not QED gauge invariant, infrared divergent and, consequently, unphysical.

the different graphical contributions can be found in ref. [7]. The contributions of Figure 2 con-
tained in the red box are absent in the electroquenched approximation. The “isosymmetric vacuum
polarization” terms, those contained in the blue box, do not “read” the charge of the valence quarks
and are expected to be sizeable (see ref. [8] for a first numerical evidence). The polarization effects
proportional to the charges of the valence quarks are a flavour SU(3) breaking effect. In the case of
pseudoscalar meson masses these can be estimated by the knowledge of the low energy constants
entering the leading order chiral perturbation theory lagrangian in presence of electromagnetic in-
teractions [12].

The starting point of the calculation of LIBE on the mass of a given hadron H is the full theory
two-point correlator

CHH(t;~g) = 〈 OH(t) O†
H(0) 〉~g −→ eMH =

CHH(t−1;~g)
CHH(t;~g)

+ non leading exps. , (4.2)

where OH is an interpolating operator with the quantum numbers of H. If H is a charged particle,
the correlator CHH is not QED gauge invariant. For this reason it is not possible, in general, to ex-
tract physical information directly from the residues of the different poles. This can be understood
by noting that to physical decay rates contribute diagrams as the one shown in Figure 3. On the
other hand, the mass of the hadron is gauge invariant and, provided that the parameters of the ac-
tion have been properly renormalized, both ultraviolet and infrared finite. It follows that (for large
times) the ratio CHH(t−1;~g)/CHH(t;~g) is both gauge and renormalization group (RGI) invariant.
By expanding the numerator and the denominator of this ratio one gets a formula for LIBE on

7
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hadron masses,

CHH(t;~g)
CHH(t;~g0)

= 1+
∆CHH(t;~g0)
CHH(t;~g0)

+ · · · = c− t(MH −M0
H)+ . . . ,

−∂t
∆CHH(t;~g0)
CHH(t;~g0)

+ · · · = MH −M0
H . (4.3)

The pion mass splitting is a particularly “clean” observable. In ref. [7] it has been derived the
elegant formula

Mπ+−Mπ0 =
(eu− ed)2

2
e2

∂t
−

. (4.4)

Note: there are no corrections proportional to m̂d− m̂u, i.e. the pion mass difference at this order is
a pure electromagnetic effect; vacuum polarization effects are the same for Mπ+ and Mπ0 and cancel
exactly in the difference; Mπ+ −Mπ0 is a genuine isospin breaking effect and, for this reason, the
electromagnetic shift of the lattice spacing enters at higher orders; since also the electric charge
does not renormalize at this order, eq. (4.4) is ultraviolet finite.

The fermion disconnected diagram appearing in eq. (4.4) has been neglected, to my knowl-
edge, in all the numerical calculations performed so far. Actually it can be shown, see ref. [7],
that this is an O(m̂udα̂em) effect and, for physical values of the average up-down mass, it can be
considered of the same order of magnitude of next-to-leading IBE. The remaining contribution,
the “exchange” diagram, can be calculated as an isosymmetric QCD observables by the following
procedure. Introducing a real Z2 noise,〈

Bµ(x)Bν(y)
〉B = δµν δ (x− y) , (4.5)

the infrared regularized photon propagator can be calculated by solving

[−∇
−
ρ ∇

+
ρ ]Cµ [B;x] = P⊥ Bµ(x) , (4.6)

where P⊥ has been defined in eq. (2.9). The calculation of the exchange diagram can thus be
reduced to two sequential quark propagator inversions,{

D f [U ] Ψ
f
B

}
(x) = ∑

µ

Bµ(x)Γµ

V S f [U ;x] ,

{
D f [U ] Ψ

f
C

}
(x) = ∑

µ

Cµ [B;x]Γµ

V S f [U ;x] , (4.7)

where Γ
µ

V is the lattice quark-photon-quark vertex, a functional of the QCD gauge background. We
get

=
〈

Tr
{

[Ψud
C ]†(t) Ψ

ud
B (t)

} 〉B
. (4.8)

Figure 4 shows the results obtained in ref. [7] for the pion mass splitting by neglecting the
fermion disconnected diagram in eq. (4.4). The different data sets correspond to different lattice

8
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Figure 4: Numerical results obtained in ref. [7] for the direct computation of LIBE on pion masses. Different colours
correspond to different (black coarser, blue finest) lattice spacings. Finite volume corrections, which are not negligible
(see discussion below), have not been taken into account yet in the plot.

spacings. The results for Mπ+−Mπ0 shown in the right panel are obtained by taking the derivative
with respect to the time of the correlators in the left panel of the Figure. By comparing the left panel
of Figure 4 with the right panel of Figure 1 one can appreciate the quality of the numerical signals
usually obtained in direct calculations of LIBE. The point is that IBE are tiny because very small
coefficients multiply sizeable hadronic matrix elements. On the other hand, the direct approach to
LIBE requires in general the calculation of several contributions, see next section.

5. Separation of QCD from QED IBE

In the graphical notation of ref. [7] the kaon mass splitting is given by

MK+−MK0 = −2∆mud∂t − (∆mcr
u −∆mcr

d )∂t

+ (e2
u− e2

d)e
2
∂t

− −
+(eu− ed)e2

∑
f

e f ∂t . (5.1)

The contributions in the first line of the previous equation are the mass and critical mass counter-
terms. Whenever electromagnetic “self-energy” contributions are present, as in the second line of
eq. (5.1), the mass counter-terms are also present because these are needed to absorb the electro-
magnetic ultraviolet divergences.

Given the presence of the term proportional to ∆mud = (md −mu)/2, the kaon mass splitting
can be used to determine the up-down mass difference and to define a prescription to separate
QCD from QED IBE. First note that since eu 6= ed there is a mixing in the renormalization of the
full theory between the parameters ∆m̂ud and m̂ud ,

∆mud =
m̂d

2Zmd

− m̂u

2Zmu

= Zψ̄ψ∆m̂ud +
m̂ud

Zud
. (5.2)

The renormalization constant Zψ̄ψ = 1/2Zmd +1/2Zmu has to be replaced with the renormalization
constant Z0

ψ̄ψ
= 1/Zm of isosymmetric QCD while, to a first approximation, Zud can be safely

9
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FIG. 1. The QCD residual mass for 163 (upper) and 243 (lower) lattice sizes. The data correspond

to unitary mass points. The linear chiral extrapolation to the mf = 0 limit is also shown on the

plot.

Figure 5: Tuning of the critical mass counter-terms by restoring the validity of chiral Ward identities of the massless
theory. The left panel is taken from ref. [7] where simulations have been performed by using (Twisted Mass) Wilson
fermions (different colors correspond to different lattice spacings) while the right panel is taken from ref. [14] where
simulations have been performed with Domain Wall fermions. The plots show that the parameters ∆mcr

f can be obtained
with high numerical precision. Details on the exact definitions of the chiral Ward identities used in the two cases can be
found in the cited papers.

calculated in perturbation theory,

1
Zud

=
1

2Zmd

− 1
2Zmu

−→ (e2
d− e2

u)e
2

32π2

[
γψ̄ψ log(aµ

?)+ finite
]

Z0
ψ̄ψ . (5.3)

A convenient prescription to separate QCD from QED IBE is given by

[MK+−MK0 ]QED (µ
?) =

−2m̂ud

Zud
∂t − (∆mcr

u −∆mcr
d )∂t +(e2

u− e2
d)e

2
∂t

− −
,

[MK+−MK0 ]QCD (µ
?) =−2∆m̂ud

(
Z0

ψ̄ψ ∂t

)
. (5.4)

All the terms appearing in [MK+−MK0 ]QED vanish if the electric charges of the up and of the down
are taken equal. Furthermore, the definition of [MK+−MK0 ]QCD is RGI invariant in the isosymmet-
ric theory, Z0

ψ̄ψ
(µ?) ∆m̂ud(µ?) = ∆m0

ud . Once a simulation of the full theory has been performed
and a value of [MK+−MK0 ]QCD has been obtained, this can be used as the “experimental” input
needed in non isosymmetric QCD simulations to tune the up-down mass difference.

In lattice theories with broken chirality, the calculation of [MK+−MK0 ]QED can be performed
provided that the linear divergent counter-terms ∆mcr

f have been accurately tuned. This can be done
as in the case of the isosymmetric critical masses by restoring the validity of chiral Ward identities
of the massless theory, see Figure 5.

The results for [MK+−MK0 ]QED are usually expressed in terms of the Dashen’s theorem break-
ing parameter εγ (see ref. [2] for the definition of other commonly used breaking parameters). The
theorem follows from the observation that the electric charge operator is diagonal in flavour space:

10
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Figure 6: Comparison plots of recent lattice determinations of m̂u/m̂d (left) and εγ (right). The green (n f = 2 + 1)
and blue (n f = 2) bands represent the FLAG2 averages [2] for these quantities.

from the flavour vector symmetries of the full theory it follows MK+ = Mπ+ + O(m̂s); from the
flavour axial symmetries of the massless theory it follows that MK0 = O(m̂s) and Mπ0 = O(m̂ud).
The breaking parameter εγ is is a measure of the O(m̂sα̂em) deviation from the chiral relation

m̂s = m̂d = m̂u = 0 7→ [MK+−MK0 ]QED = [Mπ+−Mπ0 ]QED = [Mπ+−Mπ0 ]phys (5.5)

and is defined as

εγ =

[
M2

K+−M2
K0

]QED− [M2
π+−M2

π0

]QED

M2
π+−M2

π0

=

[
M2

K+−M2
K0

]QED[
M2

π+−M2
π0

]QED −1 +O [∆m̂ud α̂em] . (5.6)

Figure 6 shows the results obtained by the different collaborations for m̂u/m̂d and εγ . Note that in
QCD+QED the ratio of quark masses is scale and scheme dependent and the results are given in
the MS scheme at µ = µ? = 2 GeV. Also the results for εγ depend (mildly) on the renormalization
prescriptions. The RM123 results [7] have been obtained by the matching procedure discussed in
this talk. The preliminary results [16] of the BMW collaboration have been obtained by using a
matching procedure briefly discussed in ref. [17] (see also ref. [18]). The preliminary results [19] of
the RBC-UKQCD collaboration (update of ref. [14]) and of the MILC collaboration [20] (update of
ref. [13]) have been obtained by using a renormalization prescription to separate QCD from QED
IBE based on chiral perturbation theory fits of lattice data. The result of the PACS-CS collaboration
has been obtained in ref. [9].

6. Finite volume effects

By putting photons in a box it is reasonable to expect large finite volume effects (FVE). This
is presumably the main issue associated with lattice simulations of QCD+QED. In the case of light
pseudoscalar meson masses, FVE have been calculated in chiral perturbation theory coupled to
electromagnetism in ref. [6]. For the pion mass splitting one gets[

M2
π+−M2

π0

]
(L)− [M2

π+−M2
π0

]
(∞) =

ê2

4πL2 [H2(MπL)−4CH1(MπL)]

∼ − ê22.8373 . . .

4π

(
Mπ

L
+

2
L2

)
, (6.1)
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Figure 7: Left panel: functions H1,2(x = Mπ L) plotted together with their asymptotic expansions derived in ref. [7].
Center and right panels: combined chiral, continuum and infinite volume extrapolation of the pion mass splitting results
of. [7]. In the center panel the chiral and infinite volume extrapolations are performed by using the chiral formulae of
ref. [6]. In the right panel the chiral and infinite volume extrapolations are performed by using a fitting function that
depends linearly w.r.t. m̂ud and 1/L2.
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FIG. 11. Finite volume e↵ect in the measured EM splittings. All of the data points have q1 = 2/3

and q3 = �1/3. Circles and squares correspond to 243 and 163 lattice sizes, respectively. The solid

line is from the finite volume fit on 243 ensembles. The dashed line is the theoretical prediction for

163 lattices based on the LEC’s extracted from 243 finite volume fit. The fit curves are evaluated

for degenerate unitary light quarks.

these O(a2 + mresa) discretization errors are small in pure DWF QCD, and they should

largely cancel in the splittings. Even assuming they do not cancel, there is no reason to

expect they are enhanced over the pure QCD case. In the first QCD calculation using the

243 ensemble, it was estimated that scaling errors were at about the four percent level for

low energy quantities like the pion decay constant and the kaon [7]. Since then, a new

calculation at the same physical volume but smaller lattice spacing has shown this estimate

was about right, or perhaps a bit conservative [15–17]. Of course, here we are interested

only in the mass splittings. The pion and kaon masses are fixed to their continuum values,

so they have no scaling errors. Instead, the lattice spacing errors enter in the LEC’s and

the physical quark masses. Therefore we assign a robust four percent scaling error to the

quark masses, which will be eliminated in up-coming calculations on the finer lattice spacing

ensemble [15–17]. This error also encompasses the uncertainty in setting the lattice scale

itself, which as mentioned earlier di↵ers by about 2 ⇠ 3 percent from the scale given in

L=24

L=16

L=16 predicted from L=24 fit

Electromagnetic contributions to pseudoscalar masses C. Bernard

of taste violations caused by photons; that is the reason that we focus here only on the data with
physical quark charges. Given that photon-induced taste violations are relatively small, however,
one could expand the fit function in powers of αEM = e2/(4π). Thus, inclusion of α2EM analytic
terms to the fit function should allow the higher-charge data to be fit. That approach seems to work,
and will be explored more in the future. For more details on EM taste-violating effects, see Ref. [4].

Results and Outlook. – Figure 2 shows a typical fit of our data for ΔM2 with physical quark
charges to Eq. (3) (with added analytic NNLO terms). We fit partially quenched charged- and
neutral-meson data simultaneously, but only the (unitary or approximately unitary) charged-meson
data is shown in the plot. This fit has 55 data points and 26 parameters; other fits have as many
as 120 data points, and from 20 to 30 fit parameters, depending on how many of the NNLO terms
are included, and whether small variations with a2 of the LO and NLO low-energy constants are
allowed. The covariance matrix of the data is nearly singular, and the statistics are insufficient to
determine it with enough precision to yield good correlated fits, so almost all fits currently used
are uncorrelated. The fit shown has an (uncorrelated) p value of 0.09. We note that what appear to
be big discretization effects are actually due in large part to mistunings of the strange-quark mass,
which is off by about 50% on the a = 0.12 fm ensembles and 25% on the a= 0.09 fm ensembles,
but only by 2% on the 0.06 fm ensemble.

The black and brown lines in Fig. 2 show the fit after setting valence and sea masses equal,
adjusting ms to its physical value, and extrapolating to the continuum. The black lines adjust the
sea charges to their physical values using NLO χPT, while the brown line keeps the sea quarks
uncharged. In the pion case, the adjustment vanishes identically, so no brown line is visible. In

Figure 1: A sampling of our partially quenched data in r1 units for EM splittings of pseudoscalar mesons
with charge±ephys, plotted versus the sum of the valence-quark masses. For clarity, only about a quarter of
the data is shown. The red squares and magenta crosses show results for the two ensembles that differ only
by the spatial volume: 203 and 283, respectively. The vertical black bar labeled “BMW” shows the expected
difference for kaons between these two volumes, based on the results from the BMW collaboration [8]. Next
to it, the two points encircled in black are our “kaon-like” points for the volumes.
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NFigure 8: Finite volume effects on the light pseudoscalar meson masses obtained by the UKQCD-RBC collabora-
tion [14] (left panel), the MILC collaboration [13] (center panel) and by the BMW collaboration [18, 16] (right panel).

where the functions H1,2(x) are plotted in the left panel of Figure 7. Similar results have been
obtained for the kaon mass splitting. According to the previous expression, leading FVE go as
Mπ/L and/or as 1/L2 and may be a as large as 30%. In ref. [7] these formulae have been used
to fit the lattice data for the pion mass splitting previously shown in Figure 4. The fit is shown
in the center panel of Figure 7: the effect of the finite volume correction (difference between
grey and coloured points) is somehow balanced by the chiral-log curvature and, within the errors,
the final result is compatible with the experimental value of M2

π+ −M2
π0 (black dashed line). In

the right panel of Figure 7 the same lattice data are extrapolated by using a phenomenological
fitting function, linear in m̂ud and 1/L2: in this case the fitted FVE are much smaller than the
chiral perturbation theory prediction and the final result is again compatible with the experimental
determination. Both the fits of Figure 7 come with χ2/do f ∼ 1.

Similar results have been found by other groups. Figure 8 shows the results of the RBC-
UKQCD collaboration [14] (left panel), of the MILC collaboration [13] (center panel) and of the
BMW collaboration [18, 16] (right panel). The RBC-UKQCD collaboration used the FVE chiral
formulae of ref. [6] to fit the data obtained on a volume with aL = 24 (L ∼ 3 fm). The results of
this fit have then been used to “predict” the data obtained on a smaller physical volume (aL = 16)
and a sizeable discrepancy has been observed. The MILC collaboration results also suggest that
measured FVE may be much smaller than the ones predicted in chiral perturbation theory. The
BMW collaboration has obtained results on several gauge ensembles, including simulations at the
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4

X �MX �QEDMX �QCDMX

N �0.68(39)(36) 1.59(30)(35) �2.28(25)(7)

⌃ �7.84(87)(72) 0.08(12)(34) �7.67(79)(105)

⌅ �7.16(76)(47) �1.29(15)(8) �5.87(76)(43)

TABLE I. Isospin breaking mass di↵erences in MeV for mem-
bers of the baryon octet. The first error is statistical and the
second is systematic. As discussed in the text, we guesstimate
the QED quenching uncertainties on the e.m. contributions to
be O(10%). Propagating the uncertainty in �QEDM2

K yields
an O(4%) error on the �m contributions. The quenching un-
certainties on the total splittings can then be obtained by
adding those of the e.m. and �m contributions in quadrature.
These guesstimates are not included in the results.

of by the p-value.
The �m corrections that we do not include in the sea

are NLO in isospin breaking and can safely be neglected.
The neglected O(↵) sea-quark contributions break fla-
vor SU(3). Moreover, large-Nc counting indicates that
they are O(1/Nc). Combining the two suppression fac-
tors yields an estimate (M⌃ �MN )/(NcMN ) ' 0.09. A
smaller estimate is obtained by supposing that these cor-
rections are typical quenching e↵ects [18] that are SU(3)-
suppressed, or by using [19] the NLO �PT results of [10].
However, in the absence of direct quantitative evidence,
it is safer to assume that the e.m. contributions to the
splittings carry an O(10%) QED quenching uncertainty.

Final results and discussion. Combining the methods
described above, we obtain our final results for the total
octet baryon isospin splittings �MN , �M⌃ and �M⌅ de-
fined above. These results, together with those obtained
for the e.m. and �m contributions, are summarized in
Table I. We also plot them in Fig. 2, together with the
experimental values for the full splittings. Our results
are compatible with experiment.

Concerning the separation into �m and e.m. contribu-
tions, there exist very few determinations of these quan-
tities up to now. In the review [20], hadron e.m. split-
tings were estimated using a variety of models and Cot-
tingham’s formula for the nucleon. These estimates are
compatible with our results within ⇠ 1.5 �. The e.m. nu-
cleon splitting has recently been re-evaluated with Cot-
tingham’s formula in [21], yielding a result which is in
agreement with ours. �MN has also been studied with
sum rules in [22].

Besides the entirely quenched, pioneering work of [23],
ours is the only one in which the baryon octet isosplit-
tings are fully computed. The only other lattice calcula-
tion of the full nucleon splitting is presented in [24][25].
Like ours, it implements QED only for valence quarks.
While their �QCDMN agrees very well with ours, agree-
ment is less good for the e.m. contribution and total split-
ting, which they find to be 0.38(7) MeV and �2.1(7) MeV,
respectively. That study was performed in rather small
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FIG. 2. Summary of our results for the isospin mass splittings
of the octet baryons. Also shown are the individual contri-
butions to these splittings from the mass di↵erence mu �md

(QCD) and from e.m. (QED). The bands indicate the size
of the splittings and contributions. On the points, the er-
ror bars are the statistical and total uncertainties (statistical
and systematic combine in quadrature). For comparison, the
experimental values for the total splittings are also displayed.

volumes with a limited set of simulation parameters,
making an estimate of systematic errors di�cult. The
few other lattice calculations consider only the �m con-
tributions to the baryon splittings, in Nf=2 [7, 26] and
Nf=2+1 [27–29] simulations. The results of [26–29] rely
on imprecise phenomenological input to fix mu/md or
(mu �md). They use the estimate for �QEDM2

K of [30],
directly in [26, 28] and indirectly, through MILC’s re-
sults for mu/md [31], in [27]. In [29], the two values of
mu/md from [30, 32] are used as an input. The most
recent calculation [7] actually determines �QEDM2

K in
quenched QED, as we do here for Nf=2+1. �QCDMN

is computed in [7, 26, 27] while all three QCD splittings
are obtained in [28, 29]. Agreement with our results are
typically good. In all of these calculations, the range of
parameters explored is smaller than in ours, making it
more di�cult to control the physical limit.

The computation presented here is an encouraging step
toward a precise determination of octet baryon splittings,
which would constitute an ab initio confirmation that the
proton cannot decay weakly.

L.L. thanks Heiri Leutwyler for enlightening discus-
sions. Computations were performed using the PRACE
Research Infrastructure resource JUGEEN based in Ger-
many at FZ Jülich, with further HPC resources pro-
vided by GENCI-[IDRIS/CCRT] (grant 52275) and FZ
Jülich, as well as using clusters at Wuppertal and
CPT. This work was supported in part by the OCEVU
Excellence Laboratory, by CNRS grants GDR n02921
and PICS n04707, by EU grants FP7/2007-2013/ERC
n0208740, MRTN-CT-2006-035482 (FLAVIAnet) and by
DFG grants FO 502/2, SFB-TR 55.
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FIG. 1. Example of FV corrections to �QEDM⌅, plotted as a
function of 1/L. The dependence of the lattice results on all
other variables has been subtracted using a fit of the type de-
scribed in the text. Each point type corresponds to one of our
five lattice spacings: a ' 0.11 fm (square), 0.09 fm (circle),
0.07 fm (up triangle), 0.06 fm (down triangle) and 0.05 fm
(diamond). The fit, which is linear in 1/L, is performed with
a cut M⇡+  500 MeV. It is plotted as a solid curve, with its
1� prediction band. It has a �2/dof = 59./67.

are su�ciently small that they may be described with a
low-order polynomial in 1/L. This is confirmed by the
data in Fig. 1, which show no sensitivity to terms beyond
linear order in 1/L. The same features are observed in
our results for �MN ⌘ Mp�Mn, but with larger statisti-
cal errors. Thus we find it su�cient to extrapolate these
quantities linearly to the infinite volume limit. The situ-
ation is di↵erent for �M⌃ ⌘ �[�I3=2]M⌃ = M⌃+�M⌃� ,
where the 1/L dependence is very small, as expected.

Concerning discretization e↵ects, the improvement of
the QCD action implies O(↵sa, a2) corrections to AX and
BX . However, due to the lack of improvement in the
coupling of the photon to quarks, discretization e↵ects
on AX are O(a). In our analysis, we include O(a) QED
discretization e↵ects to AX as well as O(↵sa, a2) QCD
ones to BX .

Combining all of this information yields a 9 parameter
description of each of the mass splittings. In the notation
of Eq. (1), this corresponds to:

AX = aX
0 + aX

1 [M2
⇡ � (Mph

⇡ )2] + aX
2 [M2

K� � (Mph
K�)2]

+aX
3 a + aX

4

1
L

, (2)

BX = bX
0 + bX

1 [M2
⇡ � (Mph

⇡ )2] + bX
2 [M2

K� � (Mph
K�)2]

+bX
3 f(a) (3)

where the aX
i and bX

i are the parameters and f(a) = ↵sa
or a2, alternatively. These functional forms characterize
the dependence of the mass splittings on the parame-
ters required to reach the physical point and to sepa-
rate them into �m and e.m. contributions. However, the
many competing dependencies make this study particu-
larly challenging.

In our fits we keep only parameters whose fitted values
are more than one standard deviation away from zero.
For �M2

K , all parameters are relevant. We also allow
for di↵erent parameter combinations if they satisfy the
previous requirement and cannot be eliminated by their
poor fit quality.

Error estimation. Our analysis methodology makes no
assumptions beyond those of the fundamental theory, ex-
cept for the isospin symmetry which is maintained in the
sea and whose consequences we discuss below. However
the analysis does depend on several choices that can be
sources of systematic uncertainties.

To deal with these uncertainties, we proceed with the
method put forward in [9]. More specifically, we con-
sider the following variations in our analysis procedure.
For the time ranges of the correlator fits, we consider 2
initial fit times, one for which we expect negligible ex-
cited state contributions and a second more aggressive
one. This estimates the uncertainty due to contributions
from excited states. Regarding the choice of scale setting
quantities, we consider 2 possibilities: the mass of the
⌦� and that of the isospin averaged ⌅. To estimate the
uncertainty associated with the truncation of the Taylor
expansion used to interpolate these two masses to physi-
cal M⇡+ , we vary the fit ranges by excluding all data with
pion mass above 400 and 450 MeV. To estimate part of
this same uncertainty for the isospin splittings, we con-
sider cuts at M⇡+ = 450 and 500 MeV, since their M2

⇡+

dependence is very mild. Part of the uncertainty associ-
ated with the continuum extrapolation is determined by
considering either ↵sa or a2 discretization errors. Finally,
to estimate any additional uncertainty arising from the
truncation of these expansions, we consider the result of
replacing either AX or BX by Padé expressions. These
are obtained by considering that the expansions of AX

and BX in (2-3) are the first two terms of a geometric se-
ries which we resum. This resummation is not applied to
the FV corrections. Instead we try adding a 1/L2 term
to either the Taylor or Padé forms. In all case, we find
the coe�cient of this term to be consistent with zero.

These variations lead to 27 = 128 di↵erent fits for
each of the isospin splittings and parameter combina-
tions. Correlating these with the 128 fits used to de-
termine (�Mph)2, and allowing various parameter com-
binations but discarding fits with irrelevant parameters,
we obtain between 64 and 256 results for each observ-
able. The central value of a splitting is then the mean
of these results, weighted by the p-value. The systematic
error is the standard deviation. Because we account for
all correlations, these fit qualities are meaningful. The
whole procedure is repeated for 2000 bootstrap samples
and the statistical error is the standard deviation of the
weighted mean over these samples. We have also checked
that the results are changed only negligibly (far less than
the calculated errors) if they are weighted by 1 instead

MeV
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Figure 9: IBE effects on the octet baryon masses obtained by the BMW collaboration (left and center panel). In the
right panel is shown a comparison plot of the results obtained by the different collaborations for the QCD contribution
to the proton-neutron mass splitting.

physical pion mass and on volumes as large as L = 6 fm. The right panel of Figure 8 shows the
infinite volume extrapolation of the BMW (preliminary) results performed by parametrizing FVE
with a term proportional to 1/L. The resulting FVE are of the same order of magnitude of the chiral
perturbation theory results. In summary, given the size of the statistical and other systematic errors
on the lattice results for pseudoscalar meson masses, it is not possible to establish at present if the
measured finite volume effects confirm the chiral perturbation theory predictions.

The BMW collaboration has recently completed [17] a systematic investigation of IBE on the
octet baryon masses. The results for the QED, QCD and total contributions to the mass splittings
are shown in the left panel of Figure 9. In the center panel of the Figure the BMW results are
fitted linearly in 1/L. The statistical errors are still very large but the fit shows that FVE on baryon
masses can be as large as 80%! The right panel of the Figure shows a comparison plot of the
results obtained by the different collaborations for the QCD contribution to the proton-neutron
mass splitting. The NPLQCD result has been obtained in ref. [21], the RBC-UKQCD result in
ref. [14], the QCDSF-UKQCD result in ref. [22] and the RM123 result in ref. [15]. There is a
substantial agreement between the different determinations and, by relying in particular on the
BMW result, this is a first confirmation that the proton cannot decay weakly.

7. IBE on hadronic matrix elements

In this last section I want to briefly discuss the problem of the calculation of LIBE in hadronic
processes, for example in the K`2 decay rate. The physical observable in this case is Γ[K+ 7→
`+ν(γ)], including soft photons. This is ultraviolet and infrared finite, gauge invariant, unambigu-
ous. Because of the presence of contributions as the one shown in Figure 3 the decay rate cannot
be factored into an hadronic and a leptonic part and it can be misleading to talk about FK without
specifying further details (see ref. [23] for a discussion of this point in the framework of chiral
perturbation theory).

On the other hand, by specifying a prescription to separate QED from QCD IBE effects, the
QCD corrections can be properly defined and accurately calculated on the lattice. This is the
approach followed in ref. [15] where QCD IBE corrections to the ratio FK/Fπ have been calculated
by starting from eq. (5.4). Similar results have been obtained in ref. [24] where leading QCD
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Figure 10: Comparison of the RM123 and HPQCD lattice results for the QCD IBE on the ratio FK/Fπ with the chiral
perturbation theory result of ref. [4].

IBE on the kaon decay constant have been calculated by starting from correlators with mu 6= md

and by relying on chiral perturbation theory. The two lattice results are compared with the chiral
perturbation theory calculation of ref. [4] in Figure 10: lattice data confirm that QCD IBE on the
K`2 decay rate are of the order of a few permille, i.e. comparable with the overall uncertainty quoted
on FK/Fπ in ref. [2]. A detailed discussion of the theoretical issues associated with a first principle
calculation of the QCD+QED IBE corrections to the decay rate will be the subject of ref. [25].

8. Conclusions

Isospin breaking effects can be calculated on the lattice from first principles, even including
QED unquenching effects. QCD+QED observables can be evaluated by starting from isosymmetric
QCD lattice simulations using reweighting techniques. On volumes L ∼ 3 fm it has been demon-
strated that the fluctuations of the reweighting factor can be kept under control. By simulating the
full theory at the physical values of the parameters m̂d− m̂u and α̂em it is difficult to extract IBE be-
cause, in general, these are smaller than the statistical errors. Leading isospin breaking effects can
also be obtained by expanding the relevant correlators with respect to the up-down mass difference
and the electric charge. This approach allows to obtain large numerical signals but it may require
the calculation of several correlators.

Finite volume effects are the main issue. This is not surprising, lattice simulations have to be
performed on a finite volume and QED is a long-range unconfined interaction. On pseudoscalar
meson masses FVE can be as large as 30% and even larger on baryon masses. Although this is
a potentially very large systematic error, we are nowadays calculating, not just guessing, isospin
breaking effects. Even a large uncertainty on isospin breaking effects is a small and reliable uncer-
tainty on the given observable: 1%×30% = 0.3%!
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