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PRELIMINARY

Figure 1: Summary of lattice results for the quark condensate Σ (in the MS scheme at scale
µ = 2 GeV). Lattice simulations with Nf = 2 + 1 + 1 dynamical flavours are separated from
Nf = 2+1 and Nf = 2 computations. Squares and left triangles indicate determinations from
correlators in the p- and ǫ-regimes, respectively. Up triangles refer to extractions from the
topological susceptibility, diamonds to determinations from the pion form factor. The gray
bands indicates our estimates for Nf = 2 and Nf = 2+1. Results included in the average are
denoted by filled green symbols. Results with credible error estimates that are not included
in the average (e.g. because they are unpublished or superseded by other results) are denoted
by empty green symbols. Results that are not included in the average because they fail one
of the quality criteria are shown with empty symbols in red.

in coming up with a fair adjustment of the rating criteria to finite-volume regimes of QCD.
For instance, in the ǫ-regime10 we re-express the “chiral extrapolation” criterion in terms of√
2mminΣ/F , with the same threshold values (in MeV) between the three categories as in the

p-regime. Also the “infinite volume” assessment is adapted to the ǫ-regime, since the MπL
criterion does not make sense here; we assign a green star if at least 2 volumes with L > 2.5fm
are included, an open symbol if at least 1 volume with L > 2fm is invoked and a red square if
all boxes are smaller than 2fm. Similarly, in the calculation of form factors and charge radii
the tables do not reflect whether an interpolation to the desired q2 has been performed or
whether the relevant q2 has been engineered by means of “partially twisted boundary condi-
tions” [75]. In spite of these limitations we feel that these tables give an adequate overview
of the qualities of the various calculations.

We begin with a discussion of the lattice results for the SU(2) LEC Σ. We present the
results in Table 11 and Figure 8. Regarding the Nf = 2 computations there are five entries
without a red tag (ETM 08, ETM 09C, ETM 12, Cichy 13, Brandt 13). Only ETM 09C and
ETM 12 are published and thus averaged (here we deviate from our “superseded” rule, since
the latter work has a much bigger error). Regarding the Nf = 2 + 1 computations there are
two published papers (RBC/UKQCD 10A and MILC 10A) which make it into the Nf = 2+1
average and one preprint (Borsanyi 12) which will be included in a future update.

10Also in case of [73] and [74] the colour-coding criteria for the ǫ-regime have been applied.
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Figure 1: Review of results for the chiral condensate from the FLAG 2013 review [1].

1. Introduction

A critical feature of the nonperturbative dynamics of QCD at zero temperature is the conden-
sation of quark-anti-quark pairs in the vacuum, spontaneously breaking the chiral symmetry of the
action. The value of the chiral condensate (the quark condensate at zero quark mass) is then an im-
portant parameter for low energy QCD [2]. The well-known Gell-Mann, Oakes, Renner (GMOR)
relation [3]:

f 2
π M2

π

4
=−mu +md

2
〈0|uu+dd|0〉

2
(1.1)

connects the u/d quark masses times condensate to the square of the mass times decay constant
for the Goldstone boson of the spontaneously broken symmetry. Eq.( 1.1) has normalisation such
that fπ = 130 MeV. The GMOR relation holds in the limit of mu,md → 0. A value for this chiral
condensate can be derived from the chiral extrapolation of lattice QCD results for light meson
masses and decay constants. Non-perturbative methods have been developed to compute the QCD
condensate. The Flavor Lattice Averaging Group (FLAG [1]) have recently reviewed the lattice
QCD calculations [4, 5, 6] of the chiral condensate. Figure 1 is the summary plot for Σ1/3 (2
GeV) (the chiral condensate) from the 2013 update of the FLAG review [7]. FLAG quote as their
averaged value 265(17) MeV for the chiral condensate in the MS scheme at 2 GeV with n f = 2+1
sea quarks.

The determination of the quark condensate for non-zero quark masses is more problematic
because, depending on the method used, there are various sources of unphysical quark mass de-
pendence and a careful definition of the condensate is required. This definition must be phrased in
terms of the Operator Product Expansion (OPE) since this is the context in which the condensate
appears [8, 2, 9]. The OPE allows a separation of short and long-distance contributions in, for
example, a short-distance current-current correlator. The expansion is in terms of a set of matrix
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Group application 〈ss〉
〈ll〉

JLQCD [12] αs 1
HPQCD [13] strange-heavy moments 0.7

Borsanyi et al. [14] hadron resonance gas 0.8

Table 1: Some values for 〈ss〉
〈ll〉 used in lattice QCD calculations.

elements of local operators multiplied by coefficient functions. The aim is for all the long-distance
contributions (with scale < µ) to be contained in the matrix elements and the short distance contri-
butions (with scale > µ) in the coefficient functions. A key matrix element, since it corresponds to
a relatively low-dimensional (d = 3) operator, is that of the quark condensate. The clean separation
of scales in the OPE only works if the local operators are not normal ordered [10, 11]. Then the
coefficient functions are analytic in the quark masses and therefore free of infrared sensitivity. This
means, however, that the quark mass dependent mixing of mψψ with the unit operator must be
taken into account and that the vacuum matrix element of mψψ is not cut-off independent. The
quantity that appears in the OPE is the vacuum matrix element in, for example, the MS scheme at
the scale µ . This matrix element can be derived from lattice QCD and I quote results here for µ =
2 GeV. The results can easily be run to other scales, as appropriate.

The value of the condensate for quarks of non-zero mass up to that of the strange quark is
needed in a number of calculations involving light quark correlators. Table 1 contains some values
for 〈ss〉

〈ll〉 used in lattice QCD calculations, or models used to analyse the results of lattice QCD calcu-
lations. A continuum example where the strange quark condensate is needed is in the determination
of the strange quark mass, ms, from hadronic τ decays [15].

Current estimates of the value of the strange quark condensate vary by almost a factor of
two [16, 17]. It is not even clear whether the strange condensate is larger or smaller than the light
quark condensate. For very large quark masses, mq > ΛQCD, say, so that the quark mass dominates
the propagator, it seems clear that the condensate should fall to zero, but this does not help in
determining the slope of the condensate with mq for small quark masses.

In this paper I review the determination of the strange (or other non-zero mass) quark con-
densate by direct calculation in full lattice QCD. There has been essentially no previous work on
computing the mass dependence of the quark condensates using lattice QCD. The talk was a based
on the paper [18] where full details can be be found.

The strange quark and light quark propagators were directly determined on a range of gluon
field configurations at different values of the lattice spacing and sea quark masses. To isolate the
low-energy nonperturbative value of the condensate from these results requires the subtraction of
a perturbative contribution. The perturbative contribution in lattice QCD has two pieces. One
diverges as a→ 0 and dominates the vacuum expectation value of the strange quark propagator,
particularly on the finer lattices. The second piece contains infrared sensitive logarithms of the
quark mass which cancel against similar terms in continuum perturbation theory allowing an in-
frared safe definition of the condensate for use in the OPE, as discussed above.

The error in the final result then depends on how well this subtraction can be done. An explicit
calculation of the perturbative pieces through O(αs) and fit for unknown higher order terms was

3
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used. The known quark mass and a dependence of these unknown terms helps in constraining them
along with the very small statistical errors in the lattice results. A particularly good discretisation
of the Dirac action known as the Highly Improved Staggered Quark (HISQ) formalism [19] was
used in ‘second generation’ gluon field configurations so that discretisation errors in the physical
nonperturbative results are small.

2. The problem of power divergences

The direct determination of the chiral condensate in lattice QCD requires the calculation of the
expectation value over an ensemble of gluon fields, U , of TrM−1 where M is the lattice discretisa-
tion of the Dirac matrix. The quark action for a given quark flavor,

S f = ψM f ψ (2.1)

and

〈ψψ〉= 〈0|ψ f ψ f |0〉=−
1
V
〈TrM f (U)−1〉U , (2.2)

where the trace is over spin, colour and space-time point and the gluon fields in the ensemble
used for the average include the effect of sea quarks (of all flavors, not just f ) in their probability
distribution. V is the lattice volume, L3×T . For a naive discretisation of the Dirac action M takes
the form:

M = γµ∆µ +m (2.3)

where ∆µ is a covariant finite difference on the lattice:
The difficulties in computing the mass dependence of the condensate can be seen from the

leading order in continuum perturbation theory.

−〈ψψ〉 =
∫

Λ

0

d4k
(2π)4

12m
k2 +m2

=
3

4π2

(
mΛ

2 +m3 log
m2

Λ2 +m2

)
(2.4)

Eq. 2.4 is the one loop continuum expression for the quark condensate for a massive quark.
The mΛ2 divergence in equation 2.4 depends on the regulator used. For example it is zero in MS.
On the lattice it is expected that a term of the form mΛ2 will diverge with two powers of the inverse
lattice spacing. This is also suggestive that the divergences 1

a2 will not be removed by using a
fermion action, such as one obeying the Ginsparg-Wilson relation. Note however, there are new
ideas on removing this type of divergence using the quark flow [20, 21]. There are additional
potential divergences with Wilson like fermions. (see for example Hamber and David [22]).

The m3 log(m/Λ) term in Eq. 2.4 is universal since it arises from infrared part of the integral.
The basic idea of our calculation is to subtract 1

a2 using perturbation theory. Additional constraints
from taking the continuum limit were found.

4
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Figure 2: Perturbative contribution to the quark condensate through O(αs).

3. Formalism for the calculation

The lattice QCD calculation used the Highly Improved Staggered Quark (HISQ) action [19].
The graphs required to compute the quark condensate through O(αs) for the HISQ action are in
figure 2, and the results are Eq. 3.1 and figure 3.

−a3〈ψψ〉PT,HISQ = am0
[
c0(am0)+ c1(am0)αs +O(α2

s )
]

(3.1)
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Figure 3: Zeroth- and first-order coefficients, c0 and c1 respectively, for the perturbative condensate, Eq.
(3.1), versus the bare quark mass parameter am0 in lattice units. The uncertainties in c0 resulting from
numerical evaluations of the lattice loop integral are not visible in that plot. The fits given in the text are
plotted as dashed lines.

The coefficients c0(am0) and c1(am0) were parametrised below. This also makes the log struc-
ture of the graphs explicit.

c0(am0) = c00 +(am0)
2 [c01 log(am0)+ c02] (3.2)

c1(am0) = c10 +(am0)
2[c11 log2(am0) + c12 log(am0)+ c13

]
(3.3)

The condensate of strange or light quark extracted from the lattice needs to be compared
against the condensates used in sum rule calculations.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
1
7

Determination of light and strange quark condensates Craig McNeile

The extraction used a ratio of lattice to continuum perturbative factors (see appendix of [18]
for some formalism). This also means that any issues with “renormalons” should cancel.

The one loop expression for the quark condensate in the MS scheme is:

−〈ψψ〉(µ)
PT,MS

= m3(µ)×
[
d01lm +d02 +αs

(
d11l2

m +d12lm +d13
)
+ . . .

]
(3.4)

where lm = log(m(µ)/µ).
To extract a massive condensate a perturbative subtraction term of the form

∆PT = −a4
(
〈m0ψψ〉PT,HISQ−〈m(µ)ψψ〉PT,MS

)
= c00(am0)

2 +αsc10(am0)
2 +(am0)

4 [c01lµ −0.077(1)
]

+ αs(am0)
4 [c11l2

µ +0.1340(2)lµ +0.406(15)
]
+ . . . , (3.5)

was defined, where lµ = log(µa).
Of particular note is that the logs in Eq. 3.5 are of the form log(µa). Potential problems from

log(m) terms in the perturbative expressions of the condensate for the HISQ action and MS cancel
in Eq. 3.5. There is theoretical justification for form in Eq. 3.5 from the OPE in the appendix of
[18].

The physical MS condensate at the scale µ:

〈mψψ〉NP,MS(µ) = a−4 (a4〈mψψ〉0−∆PT
)
, (3.6)

The cancellation of the log(m) terms in Eq. 3.5 only worked, because the perturbation theory
was not normal ordered. One consequence of this is that mq〈ψqψq(µ)〉 depends weakly on the
renormalisation scale. Most modern sum rule calculations of the condensate also don’t use normal
ordered perturbation theory.

4. Lattice QCD calculation on 2+1+1 gluon configurations

The main calculation used gauge configurations with 2+1+1 flavours of HISQ sea quarks.
These were 2nd generation configurations generated by the MILC collaboration [23]. Ensembles
with three lattice spacings: 0.15, 0.12 and 0.09 fm, and pion masses at the physical point, were
used in the analysis (see [18] for more details).

The following relation was used to compute the bare condensate.

−a3〈ψψ〉0 = (amq)∑
t

Cπ(t) (4.1)

where Cπ(t) is the correlator for the Goldstone pion. There is a diagrammatic proof in ref. [24] (see
also the discussion in our paper [18]). It is also easy to compute −a3〈ψψ〉0 using noise sources,
but Eq. 4.1 can be used with correlators generated for to measure the mass of the pion.

In the analysis Rl is introduced

Rl =−
4ml〈ψψl〉
( f 2

π M2
π)

(4.2)

6
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Figure 4: Finite volume effects in different quantities are illustrated by plotting the ratio of the quantity on
lattices of spatial length, L/a, of 24 and 32 to that on lattices of spatial length 40. The lattices have the sea
quark mass parameters of coarse set 5. The quantities shown are the pion mass (red pluses), pion decay
constant (green crosses) and unsubtracted light quark condensate (blue bursts). Pink squares give the result
for the quantity Rl defined in Eq. (4.2). Statistical errors (not shown) are approximately 0.1%.

for light quarks and

Rs =−
4ms〈ψψs〉
( f 2

ηs
M2

ηs
)

(4.3)

for strange quarks, where ηs is the strange-strange fictitious pseudo-scalar meson. The Rl and Rs

have reduced errors from mass tuning and finite size volumes. For example in figure 4 shows a
finite volume test at β = 6.0, a = 0.12 fm, mπ = 220 MeV. The main analysis used L = 32.

Figure 5 shows clearly the presence of a quadratic divergence with a−2 in the raw results for
Rq. This is very ‘clean’ in the calculations because the form of the divergence is very constrained.
Only a term of the form mq/a2 is allowed in 〈ψψ〉 for staggered quarks, i.e. no term of the form
m2

q/a can appear. In the ratio Rq this term takes the form Cm2
q/a2 where C depends on the meson

mass and decay constant. The HISQ formalism has very small discretisation errors, as is clear from
the decay constant and meson mass results in [25], and so there is little additional a-dependence to
confuse the analysis of the divergent pieces.

Because the power divergence is so dominant it is tempting to try to fit the unsubtracted results
for Rs to a very simple form: A+B/a2. This is in fact possible (it is important to include the error
in the inverse lattice spacing when doing this since this is larger than the error in Rq) and 1.02(3)+
0.725(3)/a2 is obtained which is the dashed line in lefthand plot of Fig. 5. 1.015(11)+0.229(5)/a2

was also obtained for Rl with ml = ms/5 and 1.00(1)+0.130(6)/a2 for Rl with ml = ms/10, shown
in the next two plots in Fig. 5. These fits are too naive to be useful, because they miss out many
important terms. Consequently the value and error of the intercept, A, is unreliable for extracting a

7
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Figure 5: Rq, defined as the ratio of quark mass times condensate in the MS scheme at 2 GeV to the square of
the meson mass times decay constant, as a function of the square of the inverse lattice spacing. The top plot
shows strange quarks and the bottom plot shows ms/10. The figures shows the result using the condensate
without subtraction (squares), tree level subtraction (plus) and one loop subtraction (cross). The value for αs

used to multiply the one-loop coefficient was α
n f =4
V (2/a). Dashed lines illustrate very simple linear fits to

the unsubtracted results as described in the text.

nonperturbative result for Rq, especially in the s quark case. However, the fits do illustrate that the
ratio of slopes is that expected for a term that behaves as m2

q/a2 (although the simple fit does not
allow for the running of the lattice bare quark mass with scale).

One loop perturbation theory is not enough to remove all the divergence, so Bayesian fitting
techniques were used, with the following fit models:

Rq,0(a,amq) = R(q)
NP,phys +δRPT +δRa2 +δRχ +δRvol. (4.4)

Rq,0 are the lattice results.

RNP,phys physical result in the MS scheme at 2 GeV.
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δRvol finite volume effect δRvol = ve−ML

RPT Known tree and one loop results. Also RPT,div = an
4αn

s (amq)
2

(a fπ )2(aMπ )2 and δRPT,non−div = cn
4αn

s (amq)
4

(a fπ )2(aMπ )2 .

δRa2 δRa2 = ∑
2
i=1 di

(
Λa
π

)2i
with Λ≈ 1 GeV.

δRχ includes valence and sea quark mass dependence.

The leading corrections are particularly simple because the chiral logarithms cancel to leave a
correction proportional to M2

π . Both M2
π and M4

π terms were allowed in the light quark mass fits by
defining a chiral expansion parameter

xl =
M2

π

2(Λχ)2 , (4.5)

and

xs =
(M2

ηs
− (0.6893(12))2)

2(Λχ)2 , (4.6)

with Λχ = 1.0 GeV, and taking

δRχ,val =
2

∑
i=1

g(l)i xi
l. (4.7)

The mq = ms/5, ms/10 and ml,phys results were fitted with this form taking the prior on the gi

coefficients to be 0.0(2.0). This allows for a linear term of approximately the size expected in [26].
Higher order terms than x2

l have no effect.
The physical results for Rq were

Rl,phys = −4ml〈ψψl〉MS(2GeV)

( f 2
π M2

π)
(4.8)

Rs,phys = −4ms〈ψψs〉MS(2GeV)

( f 2
ηs

M2
ηs
)

(4.9)

The final fits had χ2/do f ≈ 0.8 for 18 dof.

Rs,phys = 0.574(86) (4.10)

Rl,phys = 0.985(5) (4.11)
Rs,phys

Rl,phys
= 0.583(84). (4.12)

The complete error budgets for Rs,phys, Rl,phys and their ratio are given in Table 2. The substan-
tial 15% error in Rs,phys reflects the difficulty of extracting a physical result from a power divergent
quantity. For Rl the error is 17 times better largely because the slope of the divergent piece is 15
times smaller. Errors in Rs,phys are dominated by errors from the lattice spacing and from fitting
the remaining power divergent subtraction terms. There are also substantial errors from statistics
and from tuning to the light and strange physical mass points. This is done by tuning the appro-
priate meson masses through the term δRχ,val in Eq. 4.7. This term depends on the lattice spacing
through the definition of xl (Eq. 4.5) and xs (Eq. 4.6), because the meson masses appear in GeV

9
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Table 2: Error budget for the quantities Rs,phys, Rl,phys and their ratio defined in the text. Errors are given as
percentages of the final physical result.

Rs,phys Rl,phys
Rs,phys
Rl,phys

statistics 6.1 0.2 5.1
lattice spacing 10.0 0.3 9.7
finite volume 1.5 0.03 1.5
αs value 1.7 0.06 1.7
fitting power divergence 7.5 0.3 7.2
other perturbative subtraction 1.3 0.07 1.3
χal extrap./interp. (ms) 3.0 0.1 2.9
χal extrap./interp. (ml) 4.5 0.2 4.3
a→ 0 extrap. 1.9 0.05 1.9
sea mass effects 0.5 0.01 0.5
Total 15 0.5 14.5

units in these terms. The uncertainties in these terms then becomes correlated with the fit to the
power divergence, increasing the uncertainty. For Rl the power divergence is much less of an issue,
but these same terms dominate the final error there as well.

The following values were taken: mMS
s (2GeV) = 92.2(1.3) MeV (HPQCD [27]) and ms/ml =

27.41(23) (MILC [28, 29]). These give:

〈ss〉MS(2GeV) = −0.0245(37)(3)GeV3

= −(290(15)MeV)3 (4.13)

〈ll〉MS(2GeV) = −0.0227(1)(4)GeV3

= −(283(2)MeV)3, (4.14)

where the second error for each condensate in GeV3 comes from the error in the quark masses.
The ratio of strange to light condensates

〈ss〉MS(2GeV)

〈ll〉MS(2GeV)
= 1.08(16)(1), (4.15)

4.1 Additional cross-checks

There were some additional calculations and cross-checks reported in the original paper [18].
The analysis was repeated with gauge configurations generated with ASQTAD sea quarks by the
MILC collaboration [28]. The HISQ action was used for the valence correlators. Nine ensembles
were used with lattice spacings in the range: 0.15 fm to 0.04 fm. the physical result from the fit,
which has χ2/dof = 0.4 for 20 degrees of freedom. The physical value obtained was

Rs,phys = 0.555(84). (4.16)

This is completely consistent with the result from 2+1+1 flavors of HISQ sea quarks in Eq. 4.10,
and has a similar error. It is not such a complete calculation, lacking light quark mass results and

10
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not having such light sea quark masses, and is therefore not our preferred final result. It provides
a strong check of our 2+1+1 result, however, being a completely independent set of numbers. The
fits to the 2+1 results give very similar behaviour to that seen for the 2+1+1 case, for example
choosing a coefficient of the α2

s /a2 divergence of around 2.
For the second calculation values of the strange condensate from the HOTQCD collabora-

tion [30] were used. They generated ensembles with an improved gluon action and u/d and s
quarks in the sea using the HISQ formalism. Apart from missing c quarks in the sea, the gauge field
configurations here are improved through O(a2) at tree-level and without tadpole-improvement.

The physical value for Rs obtained from the fit was

Rs = 0.79(34) (4.17)

This is much less accurate than the result from Eq. 4.10, but agrees both with that and the result
from the MILC 2+1 ASQTAD ensembles given earlier in this section. A light quark condensate
was not extracted from the HOTQCD results because finite volume sensitivity obscures the power
divergence and leads to larger errors.

As an additional cross-check the chiral susceptibility was also computed

χ f =
∂

∂m f
(−〈ψψ f 〉) (4.18)

The calculation of χ f has both connected and disconnected contributions, which were computed
using noise sources. The results were in reasonable agreement with the values for the condensates
at the strange and light quark masses.

5. Does the chiral condensate exist as a vacuum condensate?

Brodsky, Shrock and collaborators [31] have suggested that there is no vacuum chiral conden-
sate, but the condensate is associated with a hadron. The GMOR relation is modified so that the
condensate term now carries a label for the pion.

f 2
π M2

π

4
=−mu +md

2
(〈0|uu+dd|0〉)π

2
There is support for the in medium idea from some Schwinger-Dyson calculations and the light

front formalism [32]. See [33] for an extensive discussion of the idea within the Schwinger-Dyson
framework.

The contribution of the vacuum QCD condensates to the vacuum energy is a factor of ∼ 1045

too large. If the QCD vacuum condensates do not exist, then no fine tuning of the condensate is
required to remove their contribution.

It would be very difficult to disprove the in medium condensate idea, if the chiral condensate
was only estimated from chiral perturbation theory fits to the masses and decay constants of pions
and kaons. However, there have been direct lattice QCD calculations of the matrix element in
Eq. 2.2, such as the one reviewed here. The chiral condensate has been calculated by many different
methods(see [6] for a new technique). There have also been OPE based fits to lattice correlators
which have the quark condensate as a parameter [5]. The final results for the chiral condensate are
all in good agreement with each other [1], which suggests that lattice QCD calculations support the
standard picture of chiral symmetry breaking, with a vacuum chiral condensate.
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Figure 6: A comparison of results for the ratio of strange to light condensates in the MS scheme at 2 GeV.

6. Comparison to sum rule

In figure 6 the lattice result is compared to results from sum rule calculations [34, 17, 35] for
the ratio of strange to light condensates.

Of particular interest to people in the lattice QCD community was the use of decay constant of
the Bs meson to extract 〈ss〉 using the sum rule method. In 2002 Jamin [26] used fBs/ fB = 1.16(4)
from lattice QCD to estimate 〈ss〉MS/〈ll〉MS = 0.8± 0.3. In 2008 Maltman [17], updated Jamin’s
analysis, by using fBs/ fB = 1.21(4) to estimate 〈ss〉MS/〈ll〉MS 1.2± 0.3. The change in values of
fBs/ fB from lattice QCD was due to the later lattice QCD calculations having light enough pions
to see chiral logs. The current average for fBs/ fB is 1.202(22) from lattice QCD, from FLAG
2013 [1].

6.1 Comparison of 〈ll〉MS(2GeV) with the chiral condensate

The value of 〈ll〉MS(2GeV) = −(283(2)MeV)3 can be compared to the value of the chiral
condensate. For example the 2013 FLAG review, quotes Σn f =2 = 270(7) MeV and Σn f =2+1 =
265(17) MeV.

One way to study the mass corrections to the quark condensates is to study the corrections to
the Gell-Mann, Oakes, Renner (GMOR) relation. Jamin [26] defined

Rl =−
4ml〈ψψl〉
( f 2

π M2
π)

= 1−δπ (6.1)

Chiral perturbation theory relates the value of δπ to the Hr
2 and Lr

8 Gasser-Leutwyler coeffi-
cients.

δπ ∝
M2

π

f 2
π

(2Lr
8−Hr

2) (6.2)

The new result from lattice QCD is reported in table 3 and compared to two results from sum rules.
The errors on δπ were too big to attempt to compute Hr

2 .
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Group method δπ

This work [18] lattice 0.015(5)
Jamin [26] sum rule 0.047(17)

Bordes et al. [36] sum rule 0.06(1)

Table 3: Comparing values for δπ defined in Eq. 6.1 computed using lattice QCD to results from sum rules.
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Figure 7: Condensate defined via ∆l,s(T ), as a function of temperature. Figure from [37].

7. Quark condensates at non-zero temperature

The quark condensates are important observables for lattice QCD calculations at non-zero
temperature. The quark propagator is also used to directly determine the quark condensate at non-
zero temperature, so it is interesting to compare the techniques used to remove the divergences, to
those used in this calculation.

The HOTQCD collaboration [30, 37], uses the order parameter below at non-zero temperature
to determine a quark condensate.

∆l,s(T ) =
〈ψ̄ψ〉l,τ − ml

ms
〈ψ̄ψ〉s,τ

〈ψ̄ψ〉l,0− ml
ms
〈ψ̄ψ〉s,0

. (7.1)

The second index on 〈ψ̄ψ〉l,τ is the temperature τ . The perturbative calculation reported in section 3
shows higher order corrections to Eq. 7.1 are small. Figure 7 shows the condensate determined from
Eq. 7.1 by Bazavov and Petreczky [37], as a function of the temperature.

There is alternative order parameter for the chiral condensate [14] commonly used at non-zero
temperature

∆
R
q = d +2msr4

1(〈ψ̄ψ〉q,τ −〈ψ̄ψ〉q,0), q = l,s. (7.2)

where r1 is determined from the heavy quark potential [38] and d is a constant. Figure 8 from
Bazavov and Petreczky [37], shows the light and strange condensates defined by Eq. 7.2 as a
function of temperature.

8. Conclusions

There are various possibilities to improve the calculation of the massive quark condensate. For
example, it may be possible to compute the next order in perturbation theory for the matching in
Eq. 3.1. Some people may want to develop a non-perturbative method to extract the condensates
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Figure 8: Strange and light condensates (defined from ∆R
q ) as a function of temperature, from [37].

at non-zero quark masses, however this will not be easy, because the matching must include the
masses of the quarks.

At this conference Lüscher [20, 21] presented a calculation of the quark condensates using the
quark flow. The advantage of this method is that it reduces or eliminates the terms, which diverge
with powers of the inverse lattice spacing. The value of the condensate from the quark flow has to
be converted to the MS scheme, so that the value can be compared to that from other approaches.

I have reviewed the first calculation of the mass dependence of the quark condensates, at zero
temperature. The summary result for the ratio of the strange condensate to the light condensate is:

〈ss〉MS(2GeV)

〈ll〉MS(2GeV)
= 1.08(16)(1) (8.1)
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