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1. Introduction

Calculating the phase diagram of QCD at non-zero temperature and chemical potential is one
of the most enduring unsolved problems that faces the particle physics community. The challenges
lie on the theoretical side as well as the experimental. On the experimental side it is possible
to use heavy ion collisions to locate critical surfaces in the QCD phase diagram. In a system at
equilibrium the correlation length is expected to diverge at a transition point, a signiture of which
should be visible from fluctuations of thermodynamic observables such as the baryon number,
electric charge, and strangeness. Significant progress has been made at small chemical potentials
[1], but it is difficult to interpret results at larger chemical potentials where there are no reliable
theoretical models available [2]. On the theoretical side the most natural way to calculate at finite
chemical potential would seem to involve the use of lattice simulations, since these have been
effective in obtaining the phase diagram at zero chemical potential. However, at non-zero chemical
potential there is the notorious “sign problem", which results because the fermion determinant
becomes complex,

det( /D+ γ0µ +m) = |det( /D+ γ0µ +m)|eiθ , (1.1)

making the use of conventional Monte Carlo methods based on importance sampling ineffective.
Over the years there have been several proposals for simulating systems with a sign problem

which involve adapting techniques to manage a complex fermion determinant, or converting the
system to one in which the fermion determinant becomes real. For a review, see for example
[3, 4, 5]. The procedure which we will discuss here, the density of states method [6, 7, 8, 9, 10],
specifically when used in combination with a cumulant expansion of the complex phase [9, 11, 12,
13], is in some sense, a combination of these ideas. First, the density of states method is a form of
re-weighting, in which the complex phase factor of the fermion determinant becomes part of the
observable, rather than part of the action,

〈O〉QCD =
〈OeiN f θ 〉pq

〈eiN f θ 〉pq
, (1.2)

where pq indicates that the expectation value is with respect to the phase-quenched theory in which
det( /D+γ0µ+m) is replaced by its absolute value |det( /D+ γ0µ +m)|. The density of states method
relies on the introduction of a density of some fixed quantity X ,

ρpq(X)≡ 〈δ (X−X ′)〉pq =
1

Zpq

∫
DU δ (X−X ′(U)) |det( /D+ γ0µ +m)|N f e−Sg , (1.3)

such that observables can be obtained using reweighting from

〈O〉QCD =

∫
dX
[〈δ (X−X ′)OeiN f θ 〉pq

ρpq(X)

]
ρpq(X)∫

dX
[〈δ (X−X ′)eiN f θ 〉pq

ρpq(X)

]
ρpq(X)

, (1.4)

where the distribution is normalized as ∫
dXρpq(X) = 1 . (1.5)
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This implies that the density, or distribution, has a direct probability interpretation.
The difficulty in calculating expectation values using re-weighting is that in the large volume

limit [14]

〈eiθ 〉pq = e−cV . (1.6)

This implies that exponential accuracy is needed in (1.2) in order to avoid a signal-to-noise problem.
The issue can potentially be resolved through the use of the cumulant expansion [15]

〈eiθ 〉X = exp
[
−1

2
〈θ 2〉c +

1
4!
〈θ 4〉c− ...

]
, (1.7)

with

〈θ 2〉c = 〈θ 2〉X ,

〈θ 4〉c = 〈θ 4〉X −3〈θ 2〉2X ,

... ,

(1.8)

where1

〈O〉X =
〈δ (X ′−X)O〉pq

ρpq(X)
. (1.9)

The quantities in the expectation values on the r.h.s. of (1.7) are real and positive so it may appear
that the noise problem of (1.6) has been resolved. Furthermore, the technique of WHOT-QCD is to
approximate the expansion by the first cumulant 〈θ 2〉c [9]. This corresponds to a Gaussian distribu-
tion of the complex phase of the fermion determinant and is motivated by the central limit theorem.
But has the sign problem been resolved, or has it relocated into the higher order cumulants? How
large are 〈θ 4〉c, 〈θ 6〉c, ... and what would be the consequences if they were comparable to 〈θ 2〉c?

Perhaps the most effective way to determine if the cumulant expansion converges is to measure
the cumulants directly, as members of WHOT-QCD have been careful to do in their simulations
[9, 11, 12, 13], but it is difficult to know if/when enough cumulants have been computed, and to
determine how large higher order cumulants are, since the statistics needed to accurately obtain
them is higher. Here we explore two ways to calculate the higher order cumulants analytically.
First, we consider the hadron resonance gas model [16] including contributions from ground state
mesons of spin 0 and 1, and baryons of spin 1

2 and 3
2 . Second, we calculate them from a combined

lattice strong coupling and hopping expansion [17, 18]. The details of these calculations can be
found in [19], and some consequences of the results are discussed in [20].

We begin with a statement of our results from the hadron resonance gas model and the com-
bined lattice strong coupling and hopping expansions and summarize the immediate consequences.
A summary of the calculation of the hadron resonance gas model is presented in Section 3, and a
summary of the strong coupling expansion in Section 5. Full details of these calculations can be
found in [19].

1In what follows we will take X = θ , whereas in simulations one takes X as the average plaquette, or Polyakov line,
or sometimes multiple observables are kept fixed. In our analysis we make some comparisons with simulation results
but they will be qualitative. Also, we do not calculate 〈O〉X , but rather 〈O〉pq =

∫
dXρpq(X)〈O〉X .
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2. Moments of the complex phase

The distribution of the complex phase of the fermion determinant can be calculated analyti-
cally by means of the Fourier transform

ρ(θ) = 〈δ (θ −θ
′)〉= 2

∫
∞

−∞

dp
2π

e−2ipθ 〈e2ipθ ′〉 . (2.1)

We just need to calculate the moments [21, 22]

〈e2ipθ ′〉= ZY M

Z

〈
detp( /D+ γ0µ +m)

detp( /D− γ0µ +m)
detN f ( /D+ γ0µ +m)

〉
Y M

. (2.2)

Since these moments take the form of a partition function, it is natural that our results can be
expressed as an exponential of a quantity proportional to the 3-volume V ,

〈e2ipθ ′〉= exp [− f (p)V ] , (2.3)

where f (p) is the 3-volume-independent free energy density over temperature. For the hadron
resonance gas we find that the phase-quenched moments take the form 2

〈e2ipθ ′〉pq = exp[−p2x1] , (2.4)

which leads to a Gaussian distribution via (2.1),

ρpq(θ) = 2
∫

∞

−∞

dp
2π

e−2ipθ e−p2x1 =
1√
πx1

e−θ 2/x1 . (2.5)

For the combined strong coupling and hopping expansions, working at O(β Nt ) and in the confined
phase, the moments take the form

〈e2ipθ ′〉pq = exp[−p2x1− p4x2− p6x3− ...] , (2.6)

which results in a distribution with corrections to a Gaussian form

ρpq(θ) = 2
∫

∞

−∞

dp
2π

e−2ipθ e−p2x1−p4x2−p6x3−... , (2.7)

where all of the xn are O(V ). The corrections resulting in the strong coupling and hopping ex-
pansion are a consequence of working to sufficiently high order in β and 1

ma , such that at least
6 Polyakov lines are available to form color singlets. Specifically, we find the corrections to be
a consequence of working at finite Nc. The corrections in (2.6) can only appear when an even
number of Polyakov lines can be combined in such a way that there is a nonzero contribution for
Nc = 3, which vanishes for Nc = ∞. For the strong coupling and hopping expansion, expectation
values formed with 6 Polaykov lines occur at O(h4) when working at O(β Nt ), and at O(h6) when

2In practice we calculate the expectation value 〈e2ipθ ′〉 in the full theory, rather than the phase-quenched theory,
since the expectation value in the full theory has the more straightforward definition in (2.2). It is possible to convert
between the two using 〈e2ipθ ′〉= 〈e2iqθ ′〉pq with p = q− N f

2 . To convert between the distributions one can use ρ(θ) =
Zpq
Z eiN f θ ρpq(θ) [22].
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working at O(β 0). In the hadron resonance gas model one combines quark lines into color singlets
in place of Polyakov lines. Since we only consider 2-quark combinations (mesons), and 3-quark
combinations (baryons), in the non-interacting limit, higher order contributions to the distribution
do not appear.

At this point it is helpful to notice that the xn are related to the cumulants in a simple way. A
cumulant expansion of the moments takes the form

log〈e2ipθ 〉pq =
∞

∑
n=1

(2ip)n

n!
〈θ n〉c . (2.8)

Plugging in the most general expression for the moments in (2.6) reveals that each cumulant corre-
sponds to one of the xn,

xn =−
(2i)2n

(2n)!
〈θ 2n〉c (2.9)

such that

− log〈e2iθ 〉pq = x1 + x2 + ... . (2.10)

It is clearly necessary to have x1 � x2,x3,x4, ... for the Gaussian approximation to succeed, but
they are all O(V ) so this is not guaranteed. In addition, there is an issue which will come up when
calculating them in simulations from the 〈θ n〉pq. Notice that 〈θ n〉pq can be obtained, using (2.6),
from

〈θ n〉pq =

[(
1
2i

)n d
dqn e−q2x1−q4x2−...

]
q=0

, (2.11)

where it is clear that since the xn are O (V ), then the 〈θ 2n〉pq are O (V n). In simulations the cu-
mulants 〈θ 2n〉c are obtained from calculations of the 〈θ 2n〉pq using (1.8). Therefore, in order to
obtain an O(V ) result for the higher order cumulant 〈θ 2n〉c with n > 1, it must happen that there
are cancellations of the O(V n) contributions.

An important point to make before we move on is that our calculations are valid in the confined
phase for chemical potentials µ < mπ

2 . For larger chemical potentials the distribution is expected
to take a Lorentzian form [21], where the authors obtained the distribution from chiral perturbation
theory and one-dimensional QCD. In order to extend our calculations into the region of µ > mπ

2
it would be necessary to consider a background with a condensate of bound states containing one
quark with chemical potential µ , and one with chemical potential −µ .

3. Hadron resonance gas

The hadron resonance gas model [16] provides a form of the partition function for free hadrons:
including baryons and mesons in their ground states and their resonances. It provides an effective
description of net baryon number, electric charge, and strangeness fluctuations, for example, ob-
tained from particle abundances in heavy-ion collisions [23, 24, 25], for sufficiently small temper-
atures and chemical potentials.
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To obtain the result for the expectation value 〈e2ipθ ′〉pq in (2.4) for the hadron resonance gas,
it is useful to notice that the general form of 〈e2ipθ ′〉 in (2.2) corresponds to a partition function of
a theory with p+N f quarks from the determinants in the numerator, and p "ghost quarks" from
the determinant in the denominator. Therefore, to obtain the expectation value it is necessary to
compute the spectrum of the quarks and ghost quarks, which proceeds in an analogous way to
calculating the hadron spectrum of the standard model. For all of the details see [19].

Our calculation of the moments 〈e2ipθ ′〉 includes all possible spectral combinations of mesons
with spin s = 0, 1, and baryons with spin 1

2 , 3
2 , for 2p+N f flavors. The precise contributions

are obtained by performing the decompositions, from SU(2(2p + N f )) to SU(2p + N f ) f lavor ×
SU(2)spin. For baryons the relevant decomposition is obtained from

n⊗n⊗n =

(
n(n+1)(n+2)

6

)
⊕ ... , (3.1)

(
n(n+1)(n+2)

6

)
→
( n

2 (
n
2 −1)(n

2 +1)
3

)
2
⊕
( n

2 (
n
2 +1)(n

2 +2)
6

)
4
, (3.2)

where the arrow indicates the decomposition SU(n)→ SU(n
2)×SU(2), and Rg is the decomposed

product with R ∈ SU(n
2) and g ∈ SU(2). We note that for ground state baryons it is necessary

that the total wavefunction is completely antisymmetric so in this case one only needs to consider
the decomposition of the symmetric representation in SU(2(2p+N f )) (flavor and spin combined)
since the wavefunction is antisymmetric in color. For mesons the decomposition is

n⊗ n̄→
[(n

2

)2
−1
]

3
⊕
[(n

2

)2
−1
]

1
⊕13⊕11 . (3.3)

To obtain 〈e2ipθ ′〉 for a free hadron gas one simply needs to add up the free energies from all
possible hadronic states. For free mesons the free energy is

FM
g (µI) =−g

m2
MT 2

π2

∞

∑
n=1

1
n2 K2(nmM/T )cosh[2nI3µI/T ] , (3.4)

where g = 2s+ 1 is the spin degeneracy, I3 ≡ 1
2 [(Nu−Nū)− (Nd−Nd̄)] is the third isospin com-

ponent, and µI =
1
2(µu− µd) is the isospin chemical potential. For free baryons the free energy

is

FB
g (µB−2I3µI) = g

m2
BT 2

π2

∞

∑
n=1

(−1)n

n2 K2(nmB/T )cosh[(µB−2I3µI)nβ ] , (3.5)

where µB = µu + µd + ... is the baryon chemical potential. We are working in the approximation
that the N f flavors are degenerate, each with a quark chemical potential µq = µ .

Noting that each ghost quark contributes a factor of −1 to the free energy, and −µ to the
chemical potential, the result is

〈e2ipθ ′〉pq = e−p2x1 (3.6)

with

x1 = FM(2µ)−FM(0)+FB(3µ)−FB(0), (3.7)

6
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where

FM(µ)≡ kM[FM
1 (µ)+FM

3 (µ)] ,

FB(µ)≡ kB[2FB
2 (µ)+FB

4 (µ)] .
(3.8)

Since xn = 0 for n > 1 the higher order cumulants 〈θ 2n〉c for n > 1 are zero and the distribution
takes a Gaussian form.

4. Taylor expansion

Before moving on to the strong coupling calculation it is possible to show that it is in principle
natural to have nonzero higher order cumulants. This can be seen by performing a Taylor expansion

of log〈e2ipθ ′〉 around µ/T = 0. Defining M(µ)≡ det( /D+γ0µ+m) and D(n)(µ)≡ ∂ n

∂ (µ/T )n
M(µ)

p+Nf

M(−µ)p ,

log
[

ZY M

Z

〈
M(µ)p+N f

M(−µ)p

〉
Y M

]
=

1
2!

(
µ

T

)2
[
〈D(2)(0)〉Y M

〈M(0)N f 〉Y M

]

+
1
4!

(
µ

T

)4
[
〈D(4)(0)〉Y M

〈M(0)N f 〉Y M
−3
〈D(2)(0)〉2Y M

〈M(0)N f 〉2Y M

]

+
1
6!

(
µ

T

)6
[
〈D(6)(0)〉Y M

〈M(0)N f 〉Y M
−15

〈D(2)(0)〉Y M〈D(4)(0)〉Y M

〈M(0)N f 〉2Y M
+30

〈D(2)(0)〉3Y M

〈M(0)N f 〉3Y M

]

+O
(

µ

T

)8
− log

[
Z

ZY M

]
.

(4.1)

Evaluating the derivatives and collecting terms with like powers of p results in a series of special
relationships which must hold to make x2,x3, ... = 0. For example, to make x2 = 0 at O

(
µ

T

)4 it is
required that

〈M(0)N f 〉Y M〈M(0)N f−4M′(0)4〉Y M = 3〈M(0)N f−2M′(0)2〉2Y M . (4.2)

There are similar relationships which must hold at higher orders in µ

T and additional relationships
that must hold at O

(
µ

T

)4 which can be determined by collecting terms with higher powers of p.

5. Lattice strong coupling and hopping expansion

The Taylor expansion of the complex phase moments above indicates that higher order cumu-
lants will appear in the absence of special relationships at zero chemical potential. It is possible to
show analytically that these higher order cumulants are indeed realized by means of a combined
lattice strong coupling and hopping expansion.

The combined use of the lattice strong coupling and hopping expansions allows for analytical
calculations by way of an effective Polyakov line action. Recently this technique has been used
successfully to obtain information about the phase diagram of QCD with a chemical potential
[26, 27, 28, 18]. In what follows we will use the effective Polyakov line action to calculate the xn

from the phase angle moments 〈e2ipθ 〉 in (2.2).

7
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5.1 Lattice strong coupling expansion

One of the simplifications of working at strong coupling is that the effective action can be
formulated as a function of Polyakov lines. After integrating out the spatial link variables the
lattice Yang-Mills partition function can be further simplified by means of the character expansion
[29, 30, 31]

ZY M =
∫

SU(Nc)
∏

z
dWz ∏

〈xy〉

[
1+∑

R
λR
[
χR(Wx)χR(W †

y )+χR(W †
x )χR(Wy)

]]
, (5.1)

where χR(Wx) = TrR(Wx) are the characters of the Polyakov lines Wx = ∏
Nτ−1
τ=0 U0(x,τ), ∏〈xy〉 is

over nearest neighbor sites, and the λR are expansion parameters in powers of 1
g2Nc

.
Working at leading order corresponds to truncating the sum over R at the fundamental repre-

sentation, such that

e−SY M → 1+λ1 ∑
〈xy〉

[
tr(Wx)tr(Wy)+ tr(W †

x )tr(Wy)
]
, (5.2)

with λ1 =
(

1
g2Nc

)Nτ

. This is the limit we consider from here on.

5.2 Hopping expansion

The fermion determinant can be expanded in the static, heavy quark limit using the hopping
expansion [18] (see also [32])

logdet( /D+ γ0µ +m) = a1h
[
eµ/T trWx + e−µ/T trW †

x

]
+a2h2

[
e2µ/T tr(W 2

x )+ e−2µ/T tr(W †
x )
]
+ ... .

(5.3)

For Wilson fermions

an = 2
(−1)n

n
, h = (2κ f )

Nτ , κ f =
1

2(ma+d +1)
. (5.4)

By calculating the moments 〈e2ipθ ′〉, we obtain the leading order contributions to the cumulants xn,
which are at least O(h2n). At O(λ 0

1 ) we calculate the leading order contribution to x1, ...,x6. At
O(λ1) we calculate the leading order contribution to x1,x2,x3. In both cases the calculations are
carried out in the confined phase.

To obtain 〈e2ipθ ′〉 from (2.2) in the heavy quark limit we expand in the hopping parameter h,

Q≡
〈

detp( /D+ γ0µ +m)

detp( /D− γ0µ +m)
detN f ( /D+ γ0µ +m)

〉
Y M

= 1+q1h+q2h2 + ... . (5.5)

Using (5.3), the contributions up to O(h2) take the form

q1 = 2a1N f cosh(µ/T )∑
x
〈trWx〉 , (5.6)

q2 = 2a2
1 p(p+N f ) [cosh(2µ/T )−1]∑

x,y

[
〈trWxtrWy〉−〈trWxtrW †

y 〉
]

+2a2N f cosh(2µ/T )∑
x
〈tr(W 2

x )〉+a2
1N2

f ∑
x,y

[
cosh(2µ/T )〈trWxtrWy〉+ 〈trWxtrW †

y 〉
]
.

(5.7)
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where we used the fact that the YM vacuum is charge conjugation symmetric, such that
〈[tr(W n

x )]
i...[tr(W †m

y )] j〉Y M = 〈[tr(W †n
x )]i...[tr(W m

y )] j〉Y M. The overall result for (5.5) exponentiates
as in (2.3) (we checked this to O(h4)) so it is sufficient to consider the O(V ) terms to find the
contribution to x1 defined in (2.6). The result is

x1 = 2a2
1h2 [cosh(2µ/T )−1]∑

x,y

[
〈trWxtrW †

y 〉−〈trWxtrWy〉
]
+O(h3) . (5.8)

While it is clear that there are no contributions to the xn for n > 1 at this order, since there are no
terms with O(pν) with ν > 2, they do begin to appear at O(h4). From here on we work in the
confined phase. The above result simplifies since 〈trWx〉 = 〈trWxtrWy〉 = 0, and 〈trWxtrW †

x 〉 = Ns,
where Ns is the number of spatial lattice sites.

Calculating the higher order contributions to (5.5) amounts to calculating expectation values
of Polyakov lines. We define Pn = tr(W n

x ), P∗n = tr(W †n
x ). At each order, all contributions which

result in color singlets must be obtained. For example,

〈P1P∗1 〉Y M = singlets in 3⊗ 3̄ = 1 ,

〈P2
1 P∗21 〉Y M = singlets in 3⊗3⊗ 3̄⊗ 3̄ = 2 ,

〈P3
1 〉Y M = singlets in 3⊗3⊗3 = 1

〈P4
1 P∗1 〉Y M = singlets in 3⊗3⊗3⊗3⊗ 3̄ = 3 ,

〈P2P1〉Y M = 〈(P2
1 −2P∗1 )P1〉Y M =−1 ,

...

(5.9)

Note that the third and fourth vevs only contribute for SU(3), and that the last is −2 when Nc = ∞.
In general the nonzero expectation values take the form∫

SU(Nc)
dW (trW trW †)l(trW )Ncm(trW †)Ncn 6= 0 , (5.10)

where l,m,n = 0,1,2, ....
Our results for the leading order contributions to the cumulants from the hopping expansion,

working at O(λ 0
1 ), are worked out in detail in [19] and summarized in Table 1. Our results at

O(λ1) are summarized in Table 2. For SU(3), contributions resulting from xn 6= 0 for n > 1 imply
that there are non-zero higher order cumulants (2.9). Moreover, the trend appears to be that they
become more significant with increasing µ/T or β , or decreasing m. It is interesting to observe
that in the limit Nc→ ∞ the corrections vanish.

5.3 Cumulants

Even though our results indicate that the higher order cumulants, or xn with n > 1, are non-
zero at strong coupling, λ1 → 0, they are small compared to x1 in the regime of validity of the
hopping expansion, heµ/T � 1. In Figure 1 (left) we plot xn for n = 1, ...,4 as a function of
µ/T . In Figure 1 (right) we plot the ratios x2/x1,x3/x1,x4/x1 as a function of µ/T . The plots
include all contributions of x1 and x2, up to O(h6) at O(λ 0

1 ), and the leading order contributions
to x3, ...,x6. The results are calculated for values of h and µ which are towards the border of the
region of validity so they should be interpreted with caution, but they do indicate that in the region
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Nc = 3 Nc = ∞

x1 4a2
1h2 sinh2(µ/T )+O(h3) 4a2

1h2 sinh2(µ/T )+O(h3)

x2 4h5 sinh4(µ/T )cosh(µ/T )
[
8a3

1a2−a5
1N f
]

Ns +O(h6) 0+O(h6)

x3 −8
9 Nsa6

1h6 sinh6(µ/T )+O(h7) 0+O(h7)

x4 −44
45 Nsa8

1h8 sinh8(µ/T )+O(h9) 0+O(h9)

x5 −112
225 Nsa10

1 h10 sinh10(µ/T )+O(h11) 0+O(h11)

x6
3488

14175 Nsa12
1 h12 sinh12(µ/T )+O(h13) 0+O(h13)

Table 1: Leading order contributions to the cumulants at O(λ 0
1 )

Nc = 3 Nc = ∞

x1 0+O(h3) 0+O(h3)

x2 −24λ1Nsa4
1h4 sinh4(µ/T )+O(h5) 0+O(h5)

x3 −80λ1Nsa6
1h6 sinh6(µ/T )+O(h7) 0+O(h7)

Table 2: Leading order contributions to the cumulants at O(λ1)
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µ

x1

x2

x3

x4

h = 0.1

Nf = 1

Ns = 2048

-0.02

-0.015

-0.01

-0.005

0

0 0.2 0.4 0.6 0.8 1 1.2
µ

x2/x1

x3/x1

x4/x1

h = 0.1

Nf = 1

Ns = 2048

Figure 1: At O(λ 0
1 ) in the lattice strong coupling and hopping expansion: (left) xn for n = 1, ...,4 as a

function of µ/T , (right) x2/x1, ...,x4/x1 as a function of µ/T .

of strong coupling, large quark masses, and small chemical potentials, the higher order cumulants
represented by the xn for n > 1 are small compared compared to x1. This is consistent with the
recent simulation results in [13]. Whether or not the higher order cumulants are ever significant
compared to x1 is a question that will need to be addressed non-perturbatively.

6. Distribution of the complex phase

It is worthwhile at this point to make a few comments regarding the how to best check the
validity of the Gaussian approximation. The cumulants are all O(V ), so it is possible that they
could be comparable in some regions of the phase diagram. However, even if they are comparable,
it is not necessarily the case that the distribution of the complex phase would look noticeably
different from a Gaussian.

Using our results for the xn from the strong coupling and hopping expansions it is possible
to calculate the distribution ρpq(θ) which takes the form in (2.7), and compare with a Gaussian
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Figure 2: At µ/T = 1.0: (left) Distribution of the complex phase ρpq(θ) (blue), compared with a Gaussian
distribution g(θ) (green), as a function of θ , (right) fractional difference in the distributions ρpq(θ)−g(θ)

g(θ) .

form g(θ) = 1√
πx1

e−θ 2/x1 . The results are plotted in Figure 2 (left), which are obtained for h = 0.1,
N f = 1, Ns = 2048, µ/T = 1, where the hopping expansion is approaching its edge of validity
heµ/T � 1 (as heµ/T is decreased x2, x3, ... become less significant compared to x1). Since the
difference between the actual distribution and the Gaussian form are indistinguishable by eye it is
helpful to consider the fractional difference

ρpq(θ)−g(θ)
g(θ)

. (6.1)

This is plotted in Figure 2 (right), which shows that the corrections are O
( 1

V

)
. It is possible to see

this analytically by Taylor expanding the exponentials in x2, x3, ... in the moments 〈e2ipθ ′〉 in (2.6)
in order to calculate the integral over p in the distribution (2.7)

ρpq(θ)∼
1
π

∞

∑
k=0

(−x2)
k

k!

∞

∑
l=0

(−x3)
l

l!
× ...

∫
∞

−∞

dp p4k+6l+...e−2ipθ e−p2x1 , (6.2)

where

1
π

∫
∞

−∞

dq qαe−2iqθ e−q2x1 =
1

πx(α+1)/2
1

Γ

(
α +1

2

)
1F1

(
α +1

2
;
1
2

;−θ 2

x1

)
, (6.3)

with α ≥ 0 and even, and x1 > 0. This integral goes to the Gaussian form as α → 0. Expanding in
powers of x2, x3, ..., one obtains

ρpq(θ) =
1√
πx1

e−θ 2/x1

[
1− 3x2

4x2
1
+

3x2θ 2− 15
8 x3

x3
1

+ ...

]
. (6.4)

Since x2, x3, ... are O(V ), this result is an expansion around the Gaussian form in powers of 1
V .

It is worthwhile to clarify that our results are consistent with the central limit theorem, which
is an argument in support of the Gaussian approximation from probability theory. The central limit
theorem states that the the distribution of a collection of independent data points approaches a
Gaussian form in the limit of a large enough sample size. For the case at hand the limit where each
measurement of the complex phase phase angle becomes independent corresponds to the infinite
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Figure 3: At µ/T = 1.0: (left) Distribution of the complex phase ρpq(θ) (blue), compared with a Gaussian
distribution g(θ) (green), as a function of θ , (right) Difference in distributions ρpq(θ)−g(θ).

volume limit, such that the volume is much larger than the correlation length. The corrections we
have found to a Gaussian form of the distribution begin at O

( 1
V

)
. Nevertheless, the corrections

contribute at leading order to 〈eiN f θ 〉, that is, the central limit theorem is not a sufficient reason to
use only the first cumulant.

At this point one might argue that the distribution appears to take an almost Gaussian form
because we are working in a region of phase diagram where x2,x3, ... are much smaller than x1.
However, it is possible to demonstrate that the distribution of the complex phase can also be in-
distinguishable from a Gaussian, and consistent with the central limit theorem, even when the
cumulants are comparable in magnitude (see also [19]). To make this point we choose hypothetical
values of x1,x2,x3 which are more comparable, and re-plot the distribution along with the Gaussian
form. This is shown in Figure 3 (left). Note that we kept x4,x5,x6 as before where x6 > 0 ensures
convergence.

In Figure 3 (right) we plot the ordinary difference in the distributions ρpq(θ)− g(θ), which
shows that the corrections to a Gaussian form in ρpq(θ) appear in the central region of the distribu-
tion, and that the corrections are sufficiently small that even significant contributions from x2, x3,
... could be impossible to see by considering the shape of the distribution alone.

7. Binder cumulant

Another method of measuring the validity of the Gaussian distribution is offered by calculating
Binder cumulants. For example, the first relevant Binder cumulant is

Bθ
4 ≡

〈θ 4〉
〈θ 2〉2 . (7.1)

Since the fourth cumulant of the expansion of 〈eiN f θ 〉 is defined by

〈θ 4〉c = 〈θ 4〉−3〈θ 2〉2 , (7.2)

this indicates that

Bθ
4 → 3 as 〈θ 4〉c→ 0 . (7.3)
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Simulation results of Ejiri in [9] with mπ

mρ
≈ 0.7, using the improved staggered quark action and

working on 163× 4 lattices, indicate that Bθ
4 is close to 3. However, it is important to notice that

Bθ
4 is expected go to 3 in the large volume limit. This is because 〈θ 4〉c = (Bθ

4 −3)〈θ 2〉2 = O(V ),
and 〈θ 2〉2 = O(V 2). Therefore

Bθ
4 −3 = O

(
1
V

)
. (7.4)

Since this result is only based on the fact that the cumulants are all O(V ) the message here is that
it could well be that Bθ

4 → 3, even while the xn, for n > 1, are significant. It would be interesting to
see how the xn compare using the simulation parameters in [9].

8. Discussion

It is constructive to discuss the simulation results which exist already that have made use of
the Gaussian approximation. These results are obtained by the WHOT-QCD collaboration. In
[12, 13] WHOT-QCD presents simulation results in the heavy quark limit using the unimproved
Wilson quark action, and 243× 4 lattices. Their results for the distribution indicate that it takes
a Gaussian form for a wide range of values of the average Polyakov line. A comparison of the
leading and higher order cumulants indicates that the second cumulant 〈θ 2〉c is always dominant.
In terms of the hopping parameter and chemical potential, data taken for κ4 sinh(µ/T ) = 0.00002
in [13] (see Figure 9) indicate that the higher order cumulants appear to be consistent with zero, but
for κ4 sinh(µ/T ) = 0.00005, 〈θ 4〉c has grown compared to 〈θ 2〉c, in particular when the Polyakov
line approaches zero. This is consistent with our results in that there is increased importance of the
higher order cumulants as the chemical potential is increased, or as the quark mass is decreased.

What is perhaps more surprising is that simulation results for light quarks [11] with mπ

mq
≈

0.8, using the improved Wilson quark action and working on smaller lattices 83×4, also indicate
that the distribution takes a Gaussian form, even at large values of the chemical potential µ/T =

0.4,2.4 (see Figure 3 in [11]). At µ/T = 0.4 the higher order cumulant x4 =
1
4!〈θ 4〉c appears to be

consistent with zero (see Figure 4 in [11]), but at µ/T = 1.2 it is difficult to judge due to error bars
which are sufficiently large that x4 could be comparable to x2, so it will be interesting to see what
new results will show.

It is also important to understand why our results for the distribution ρpq(θ) from the strong
coupling and hopping expansion differs from that of the hadron resonance gas model. In [33]
the authors calculate the pressure from the strong coupling and hopping expansion and find that the
result matches on precisely to that from the hadron resonance gas model. There is no inconsistency.
The calculation in [33] is performed including terms up to O(h3) in the hopping expansion. In our
calculation the differences in the distributions only start to appear at O(h4). To obtain a contribution
at this order from the hadron resonance gas model, which would lead to a nonzero x2, one would
need to consider bound states of at least 4 quarks, since that would be the only way to obtain a
contributions at O(p4) in log〈e2ipθ ′〉. However, since 4 quarks can not combine to give nonzero
contributions for Nc = 3 which vanish at Nc =∞, we expect that one would actually need to consider
bound states of at least 6 quarks.
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9. Conclusions

We have calculated the leading order contributions to the the first six cumulants in a cumulant
expansion of the complex phase 〈eiN f θ 〉pq, using the hadron resonance gas model, and a combined
lattice strong coupling and hopping parameter expansion. Considering free ground state mesons
of spin 0 and 1, and baryons of spin 1

2 and 3
2 , we find that the distribution of the complex phase

takes a perfectly Gaussian form. However, when the strong coupling and hopping expansion are
considered there are corrections which begin to appear at O(h4) for O(λ1) and at O(h6) for O(λ 0

1 ).
These appear to grow as the quark mass and coupling strength decrease, or as the chemical potential
increases.

The main implication of our work is that in order to justify truncating the cumulant expansion
to the second order cumulant, it is is necessary to show that higher order cumulants are negligible.
For this purpose, neither the apparent Gaussianity of the phase angle distribution, nor the near
agreement of the Binder cumulant Bθ

4 with 3 is sufficient. In either case, corrections on the order of
1
V or smaller can be associated with significant higher-order cumulants. Thus measurements of the
phase angle moment 〈θ 4〉c to an accuracy of at least O( 1

V ) is required. For higher order cumulants,
the phase angle moments would have to be computed to accuracies of even higher powers of 1

V .
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