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Reweighting is not a new method in lattice QCD, but a comprehensive analysis is missing in
the literature. We close this gap by presenting: (i) a proof of an integral representation of the
complex determinant of a complex matrix, (ii) a method to control the stochastic error of its
Monte Carlo estimation, (iii) expansions of the stochastic error and the ensemble fluctuations
of the one flavor reweighting factor. Based on (iii) we present a detailed scaling analysis and
optimized reweighting strategies. As an application we analyze the ensemble fluctuations of the
reweighting factor corresponding to the sea contribution to isospin splitting and predict at physical
quark masses a standard deviation of ±20%.
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One flavor mass reweighting: foundations Björn Leder

1. Introduction
In lattice QCD observables are computed as expectation values 〈O〉 of composite fields O . The

brackets stand for the average over an ensemble of gauge configurations that is generated according
to a probability distribution P. Since P depends on all the bare parameters of QCD a new ensemble
has to be generated for each set of bare parameters, e.g., to study the continuum limit or the mass
dependence of observables. However, it is also possible to obtain 〈O〉P′ if P′ = P ·W , because then

〈O〉P′ = 〈OW 〉/〈W 〉 . (1.1)

The variance of the reweighting factor W limits the applicability of reweighting. If its fluctuations
become too large a reliable error estimation is impossible: only a few configurations out of a finite
ensemble of configurations from a Monte-Carlo simulation will dominate the mean, i.e., the so-
called overlap problem emerges.

Assuming W = 1/det(I+εD−1X) with some complex matrices D, X and real scalar ε , which
is the case for mass reweighting, we can expand the variance var(x) =

〈
x2
〉
−〈x〉2

σ
2
W ≡ var(W )/〈W 〉2 = ε

2var(Tr(D−1X))+O(ε3) . (1.2)

We will come back to this expression in Section 4. But first we need to specify how to numerically
evaluate the reweighting factor W , i.e., the determinant of a complex matrix. Direct computation is
impossible since D will turn out to be the lattice Dirac operator. Instead we write in Section 2 the
determinant as an integral and briefly describe a proof for its existence for general complex matrices
A if A+A† is positive definite. With this proof at hand we define an unbiased and robust stochastic
estimation of the integral in Section 3. The application of these results to mass reweighting and
numerical results for the scaling of the fluctuations are presented in Sections 4-6.

2. Integral representation of the determinant
Let A ∈ Cn×n and η ∈ Cn and σ(A) the eigenvalues of A. Then one can show

1
detA

=
∫

D[η ] e−η†Aη iff λ > 0 , ∀λ ∈ σ(A+A†) (2.1)

with η = η1e1 + · · ·+ηnen, ηi ∈ C, {e1, . . . ,en} an orthonormal basis of Cn and

D[η ] =
n

∏
i=1

dRe(ηi)dIm(ηi)

π
. (2.2)

For normal matrices the proof is straightforward since then A is diagonalizable by a unitary
matrix, i.e., A = U†ΛU with U†U = I and Λ = diag(λ1, . . . ,λn). The transformation η → U†η

has a Jacobian determinant of one and simplifies the multi-dimensional integral to a product of
two-dimensional integrals∫

D[η ] e−η†Aη =
n

∏
i=1

∫ dxidyi

π
e−λi(x2

i +y2
i ) iff A normal . (2.3)

The latter is defined iff Re(λi) > 0 and can be solved via polar coordinates giving 1/λi. Since
A =U†ΛU we have σ(A+A†) = σ(2Re(Λ)), thus proving Eq. (2.1).
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For non-normal A, e.g. the Wilson Dirac operator or functions thereof, there is no unitary
transformation that diagonalizes A. In [1] a proof was given based on the Schur decomposition
of A = Q†(Λ+K)Q, with unitary Q and strictly upper tridiagonal K. Surely we have det(A) =
det(Λ+K) = det(Λ) = det(U†ΛU) for all unitary U , i.e., the determinant of a non-normal matrix
A is equal to the determinant of a normal matrix with the same eigenvalues. The proof shows that
if the integrand is absolute convergent, i.e., if λ ∈ σ(A+A†) > 0, the integral representation of
1/det(Λ+K) is equal to that of 1/det(Λ) by variable substitution.

3. Stochastic estimator
If the integral representation of the determinant Eq. (2.1) exists an unbiased stochastic estima-

tor of W (A) = 1/det(A) is given by

WNη
(A) =

1
Nη

Nη

∑
k=1

e−η(k)†
(A−I)η(k)

, (3.1)

with Gaussian distributed1 random vectors {η(1), . . . ,η(Nη )}. By the rules of Monte-Carlo inte-
gration WNη

differs from W by terms of O(1/
√

Nη). Since this estimator can be complex we
define the variance as σ2

η(A) =
〈〈

WNη
(A)WNη

(A)∗
〉〉
−
〈〈

WNη
(A)
〉〉〈〈

WNη
(A)
〉〉∗, where 〈〈O〉〉 =∫

D[η ]exp(−η†η)O. It is explicitly given by the integral representation of

σ
2
η(A) =

1
det(A+A†−1)

− 1
det(AA†)

. (3.2)

Therefore the variance exists iff σ(A+A†)> 1 (see [1] for a proof). If the matrix A can be written
as A = I + εB with ε > 0 and ε||B|| � 1 the relative error δ 2

η = σ2
η/(Nη |W |2) can be expanded as

δ
2
η(A) =

1
Nη

[ε2Tr(BB†)+O(ε3)] . (3.3)

For the validity of the estimator in Eq. (3.1) it is enough to ensure σ(A+A†) > 0, since then
formally WNη

→W for Nη → ∞. However, in numerical evaluations where only a small finite
number of random vectors is affordable, a well defined and controlled error with an expansion as in
(3.3) is indispensable. An unbiased stochastic estimator that fulfills these conditions automatically
can be based on a factorization of A (and thus 1/det(A)). Assume A= I+εD−1X with ε||D−1X ||&
1. Then for N ≥ 1

A =
N−1

∏
i=0

[I +(δi+1−δi)D−1
i X ] with Di = D+δiX , δ0 = 0 , δN = ε , (3.4)

if Di is invertible for all i = 0, . . . ,N− 1. Note that A can be written as a ratio A = DN/D0 and
Eq. (3.4) as a product of ratios A = ∏i Di+1/Di. The determinant W (A) factorizes in the same way
and the unbiased estimator is given by

WNη ,N(A) =
N−1

∏
i=0

WNη
(I + ε̄iD−1

i X) , ε̄i = δi+1−δi , (3.5)

1Other choices are possible. See [1] for a more general expression.
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where each factor uses an independent set of random vectors. In the view of the boundary con-
ditions in Eq. (3.4) and the aim of minimizing the stochastic error in Eq. (3.3), the sequence
D0, . . . ,DN−1 should be taken as discrete steps along a smooth interpolation between D0 and DN−1

with ε̄i→ 0 for N→ ∞. In the simplest case, which we assume here, it is a linear interpolation and
ε̄i ≡ ε/N. Since the eigenvalues of I + ε̄iD−1

i X lie in the complex plane within a circle around one
whose radius is shrinking to zero as N→∞, the condition for the variance Eq. (3.2) to exist and the
expansion in Eq. (3.3) to converge for each factor in Eq. (3.5) can always be fulfilled by choosing a
large enough N. Because each factor is an independent estimator, the overall relative error is given
by simple error propagation and we obtain

δ
2
η(A) =

1
Nη

N−1

∑
i=0

[ε̄2
i Tr((DiD

†
i )
−1XX†)+O(ε̄i

3)]
N→∞

≤ ε2

NNη

max
i

Tr((DiD
†
i )
−1XX†) . (3.6)

Thus for large enough N the remaining condition for the existence of the estimator and the variance
is that Di is invertible for all i = 0, . . . ,N−1.

4. Mass reweighting in lattice QCD
We consider mass reweighting in lattice QCD with the lattice Dirac operator Dm = D0 +m,

where D0 is the operator at zero bare mass. Although mainly independent of the specific fermion
discretization we have O(a)-improved Wilson fermions in mind, for which we will present some
results in Sections 5 and 6.
4.1 One and two flavor reweighting

The reweighting factors are determinants of ratios of Dirac operators at different mass parame-
ters m. We here consider one and two flavor reweighting, which covers a wide range of applications
of mass reweighting in lattice QCD. The matrix A = I + εD−1X in the general formulas above is
given by

A1f = D−1
ms−∆mDms = I +∆mD−1

ms−∆m , (4.1)

for one flavor reweighting and

A2f = (Dmr−γ∆mDms+∆m)
−1Dmr Dms = I +∆m(Dms+∆mDmr−γ∆m)

−1(γ∆m+ γDms−Dmr) , (4.2)

for two flavor reweighting. In each case mr,s are the ensemble mass parameters and ms±∆m and
mr− γ∆m, respectively, are the target mass parameters. For a detailed discussion of Eq. (4.2) we
refer to [1]. The special case mr = ms and γ =−1, i.e., reweighting of a mass-degenerated pair of
quarks, was considered in [2]. Here we concentrate on the special case mr = ms and γ = 1, which
we dub isospin reweighting

A± = I +∆m2(D2
ms
−∆m2)−1 . (4.3)

4.2 Twisted mass reweighting
Applying the estimator of Section 3 we have to ensure that Dm is invertible for all occurring

values of m and for all configurations of a given ensemble. For Wilson fermions this can in general
not be guaranteed. A solution is to add a small twisted mass D0 → D0 + iγ5µ , because then the
lattice Dirac operator has a gap. If a finite twisted mass is already included in the simulation as
proposed in [3], this does not mean any additional effort. If the ensemble was generated at µ = 0
an additional reweighting to finite µ and back is necessary. In [1] we proposed to do this only for
those configurations that suffered from small eigenvalues of Dm for µ = 0. However, to ensure the
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V/a4 mPS in MeV m in MeV max(|∆m|) in MeV

D5 48×243 440 32 3
F7 96×483 270 12 3

Table 1: Ensembles and maximal reweighting distance considered for the numerical results. The pion
masses mPS and the renormalized quark masses m are rounded to steps of 5MeV and 1MeV, respectively.

interchangeability of the integral over gauge fields and random vectors, it is necessary to do this for
every configuration2. The analysis of the fluctuations and stochastic estimators in Section 3 can be
applied to the case of twisted mass reweighting as well and is currently under investigation.

4.3 Fluctuations and stochastic error
Assuming ∆m > 0 and m = ms−∆m we obtain for the relative stochastic error and the fluctu-

ations 〈
δ

2
p
〉
≈ ∆m2p

NNη

〈
Tr((DmD†

m)
−p)
〉

and σ
2
p ≈ ∆m2pvar(Tr(D−p

m )) . (4.4)

with p = 1 for one flavor and p = 2 for isospin reweighting. Some insight into the volume and
(renormalized) quark mass dependence of the involved traces can in principal be obtained from
chiral perturbation theory, e.g., as in [4]. For example, at lowest order in the chiral expansion

〈
Tr((DmD†

m)
−p)
〉
=

mΣV
m2p

Γ(p− 1
2)√

π Γ(p)
, (4.5)

with the volume V , the chiral condensate Σ and the renormalized quark mass m. In lack of an
explicit calculation for var(Tr(D−p

m )) we assume the ad-hoc scaling formula k · (V/a4)/(aq−2pmq)

with some dimensionless constant k and some power q of the renormalized quark mass.

5. One flavor reweighting
In [1] numerical results where presented for mass reweighting of one ensemble, tagged D5,

of Nf = 2 O(a)-improved Wilson fermions at a lattice spacing of a = 0.066fm [5]. Here we add a
second ensemble, tagged F7, at a smaller pion mass mPS and with lager volume to the analysis. The
ensemble was generated within the CLS effort3. We list the lattice volumes, the pion masses and
the renormalized quark masses, as defined in [5], for the two ensembles in Tab. 1. We also give the
maximal renormalized reweighting distance, where ∆m is the difference of the renormalized quark
masses before and after reweighting ∆m = m(m)−m(m−∆m).

For the reweighting distances considered here the expansions in Eqs. (1.2) and (3.6) work and
are dominated by the first term. We demonstrate this in the left panel of Fig. 1 for the ensemble
fluctuations. The behavior of the stochastic error is similar. The two ensembles at different quark
masses allow for a study of the quark mass dependence of the reweighting factor. As explained in
Section 4 we expect for one flavor reweighting

〈
δ

2
1f
〉
≈

kη ,1f

NNη

∆m2V
a(2+q)mq and σ

2
1f ≈ k1f

∆m2V
a(2+q′)mq′ , (5.1)

2We thank M. Lüscher and S. Schaefer for pointing this out.
3https://twiki.cern.ch/twiki/bin/view/CLS/
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Figure 1: Left: Dependence of the ensemble fluctuations σ2
1f of one flavor reweighting on the reweighting

distance ∆m in lattice units for ensemble D5. Right: Dependence of σ2
1f and the stochastic error δ 2

1f on
the renormalized quark mass m. Both quantities are normalized such that differences in the volume and
the renormalized reweighting distance ∆m are removed. The stochastic error

〈
δ 2

1f
〉

is multiplied by 0.2 for
visibility. Out of the 8 points in the left panel we plot the one with the largest a∆m, the one at half this
distance and two points that correspond to the same absolute value but the opposite sign of ∆m. The number
of random vectors vectors is fixed to Nη = 6 and N = 8 at (or N = 4 at half) the maximal reweighting
distance. The renormalized quark mass is the average mass of the two quarks after reweighting.

where we replaced ∆m by the difference of the renormalized masses. Lowest order chiral pertur-
bation theory predicts q = 1. In order to reveal the mass dependence we plot in the right panel
of Fig. 1 σ2

1f/(V ∆m2/a2) and
〈
δ 2

1f

〉
·NNη/(V ∆m2/a2) as function of the (average) renormalized

quark mass after reweighting. The four points for each ensemble correspond to ±max(|∆m|) and
half this distance. Note that we neglect errors on the x-axis.

There is no visible dependence on the quark mass, so one would conclude q = q′ = 0. This
result is somewhat puzzling, since for very large mass the fluctuations should go to zero and for
very small mass the chiral expansion should describe the data. These results seem to be obtained
in an intermediate regime.

6. Isospin reweighting
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Figure 2: Same as Fig. 1 but for isospin reweighting, i.e., σ2
± and

〈
δ 2
±
〉
.

In the case of isospin reweighting the two quarks are reweighted simultaneously in opposite
direction, as in Eq. (4.3). The expansions in Eqs. (1.2) and (3.6) work also in this case. We
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demonstrate this in the left panel of Fig. 2 for the ensemble fluctuations. Again the behavior of the
stochastic error is similar. Therefore we expect for isospin reweighting

〈
δ

2
±
〉
≈

kη ,±
NNη

∆m4V
aqmq and σ

2
± ≈ k±

∆m4V
aq′mq′ , (6.1)

with q = 3 indicated by lowest order chiral perturbation theory. In the right panel of Fig. 2 we plot
σ2
±/(V ∆m4) and

〈
δ 2
±
〉
·NNη/(V ∆m4) as function of the renormalized quark mass after reweighting.

The two points for each ensemble correspond to max(|∆m|) and half this distance. There clearly is
a strong dependence on the mass and we also plot the result of one parameter fits of the fluctuations
and the stochastic error with q′ = 2 and q = 3. If we assume Eq. (4.5) to be applicable, i.e., higher
order terms and finite volume effects to be negligible, the latter fit yields a prediction for the chiral
condensate Σ = (325MeV)3.

7. Conclusion
Reweighting factors in lattice QCD almost always include determinants of ratios of the lat-

tice Dirac operator, i.e., large sparse matrices. The numerical evaluation is necessarily stochastic
and based on an integral representation of the determinant. Stochastic estimators with controlled
variance can be defined if the determinant is factorized.

Both, the stochastic error of the reweighting factor and its ensemble fluctuations can be ex-
panded in the reweighting distance. For small reweighting distances they are dominated by the first
term in this expansion. In the case of one flavor and isospin reweighting the dependence on the
renormalized quark mass is analyzed. Whereas for one flavor reweighting there is no dependence
in the range considered, for isospin reweighting a strong dependence, ∝ 1/m2 for the ensemble
fluctuations, is found. Although not significant at the quark masses considered here, they will be-
come important at physical quark masses. From the value for F7 in the right panel of Fig. 2, the
numbers in Tab. 1 and ∆m = (md−mu)/2 ≈ 1.5MeV one obtains σ2

±(F7) ≈ 0.0007. Compared
to F7 physical masses mean a factor four smaller quark mass and a factor (4/3)4 larger volume
to keep finite volume effects small. Thus σ2

±(phys. mass) ≈ 0.034, which can have a significant
effect on observables.
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