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Chroma, can run unaltered on GPU clusters and supercomputers.
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1. Introduction

Precision lattice QCD calculations are performed on massively parallel (super)computers and
there is justified desire for codes to be efficient. Compiled architecture-independent C++ code vir-
tually never achieves a high performance [1]. A good example is the QDP++ library which provides
data types and operations suitable for lattice field theory [2]. The library provides excellent and
extensible functionality and makes formidable use of the generic C++ language features. However,
typically it achieves a high performance only through specializations which partially removes its
generic features.

QDP-JIT/PTX is a reimplementation of the QDP++ library with an identical high-level inter-
face, but which provides on the code generating end an assembler language implementation which
achieves a high performance on the CUDA architecture.

2. The QDP++ Library

The QCD Data Parallel (QDP++) library provides the data structures and implements the oper-
ations for high-level applications like Chroma [2]. The data type system provides “building blocks”
consisting of up to rank-2 tensors which are combined in “levels” to build data types. The num-
ber of levels which combine the building blocks is in principle unbound, in the standard QDP++
implementation however, two levels, named after the QCD index spaces “spin” and “color”, are
implemented where the number of spin and color components Ns and Nc are configurable. The
elements of field variables are ascribed to the sites of a hyper-cubic lattice where the number of
space-time dimensions Nd is configurable. Field variables ascribed to the links of the lattices are
typically implemented as an 1-dimensional array of fields with Nd elements.

Operations on QDP++ data types are provided in operator infix-form (C++ operator over-
loading) on all levels of the type hierarchy. The operations are implicitly data-parallel, thus the
programmatic loops over index spaces are implicitly generated by the framework. Stencil-like
operations are provided which can be used as building blocks to construct, e.g., gauge invariant
quantities. The lattice is implemented with periodic boundary conditions; other boundary condi-
tions can be implemented as available, e.g., in Chroma.

Documentation and user information about the QDP++ library is available [3].

3. CUDA Architecture

The CUDA architecture is a parallel computing platform and programming model created by
NVIDIA for use with their GPUs. CUDA C/C++ provides a small set of extensions to standard
programming languages, like C/C++, that enables developers to implement parallel algorithms
for GPUs. The Parallel Thread Execution (PTX) [4] is an intermediate assembler language for
a virtual GPU architecture created by NVIDIA. This virtual architecture is entirely defined by
the capabilities, or features, which it provides, i.e. its “compute capability”. For example, the
compute capability defines whether the fused multiply-add or the division operation with IEEE
754 compliant rounding is available. The instruction set operates on an infinite register model
which eliminates the need for any explicit stack management. NVIDIA made the documentation
and interfaces to kernel development in the PTX language publicly available.
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The compute compiler driver translates a PTX program to machine code for a GPU archi-
tecture. It thus provides the possibility to take a PTX program which is either embedded in the
executable or dynamically generated and “Just-In-Time” (JIT) compile it to the GPU architecture
installed in the system.

An equivalent of the C math library implemented in PTX is not provided by NVIDIA. The
developer working on the PTX assembler level is required to provide implementations of mathe-
matical functions as needed.

4. QDP-JIT/PTX

The QDP-JIT/PTX library is a reimplementation of the QDP++ library for the CUDA archi-
tecture. It supports the same high-level interface of QDP++ (data types and operations) which
enables applications such as Chroma to run unaltered on GPU clusters and supercomputers. Spe-
cial emphasis was put on performance and we applied several optimization techniques as we shall
demonstrate later on. In the following we will give a brief overview of its implementation for
GPUs.

The Kepler architecture, in particular the K20Xm GPU, comprises a total number of 2688
CUDA cores which share 1.5 MB of L2 cache. Clearly, latency to global memory (400-800
cycles[5]) must be overcome by other means than using the cache hierarchy. Execution of an
instruction with operands that are not loaded yet does not stall the Streaming Multiprocessor (SM)
but triggers switching the thread context. Thus, on GPUs latency to global memory is typically
overcome by a large number of resident threads which the scheduler can select for execution.
CUDA thread parallelization was implemented on the level of lattice sites which provides a high
occupancy if the local volume is large enough.

Kepler’s ISA encoding allows for 255 GPU registers per CUDA thread. The compute compiler
driver issues spilling code for registers which cannot be allocated in the register file. Spillage goes
to local memory, a thread-private area of (high latency) GPU memory. Most of our generated
kernels use less than 100 GPU registers on the Kepler architecture, thus register spilling does not
occur. Exceptions are the Wilson DSlash operator and the trace of the plaquette ReTr(Pµν(x))
which require in double precision 249 resp. 158 GPU registers thus still do not trigger spilling.

Another object competing for local memory is the threads’ stack space. A consequence of
(global) C++ operator overloading, as used in QDP++, is the allocation of return values on the pro-
gram stack. In principle optimizing compilers should be able to eliminate these stack allocations.
However, our experience with previous implementation of QDP++ for CUDA, namely QDP-JIT/C
[6, 7], and our experience with the original QDP++ library is that C++ compilers are not able to
eliminate stack allocations completely. QDP-JIT/PTX generates CUDA kernels in the PTX as-
sembler language where stack allocations are eliminated by unrolling the operations to the register
level.

We implemented a templated PTX code generator leveraging the Portable Expression Tem-
plate Engine (PETE) [8] parametrized on the expression. Instantiation of the code generator yields
C++ code which, when triggered, generates PTX code for the expression in question [9]. Code is
generated for all levels of the type hierarchy which effectively eliminates the temporaries other-
wise created as intermediate results. Subsequently the compute compiler driver translates the PTX
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code to executable GPU code. This procedure was found to execute smoothly. Neither the code
generation, nor the subsequent compilation by the compute compiler generate a significant amount
of overhead.

The QDP-JIT/PTX library includes comprehensive CUDA memory management. We lever-
age PETE to ensure that all referenced field variables within an expression are available in GPU
memory prior to launching a kernel. Due to the dynamic nature of the memory access pattern (I/O
routines, etc.) we implemented a “cache” for field variables which can spill least recently used
fields to CPU memory in order to allocate new fields on the GPU. As a result CUDA memory
management is completely automated and altering or annotating the application source code with
memory copy routines is not needed.

5. Optimizations

An optimization technique which we applied is changing the data layout for field variables to
suit the GPU architecture. The original QDP++ library uses arrays of structures (AoS) for its data
types which also determines the data layout. This layout is suitable for a scalar CPU architecture
where relatively few threads can be served with a few cache lines. The GPU differs fundamentally
here. The load and store units are activated simultaneously at thread warp granularity and the
highest memory bandwidth is achieved when the memory accesses are coalesced. In QDP-JIT/PTX
we use a data layout that results in coalesced memory accesses:

I(iV , iS, iC, iR) = ((iR ∗ IC + iC)∗ IS + iS)∗ IV + iV

where IV ,IS,IC,IR are the index domains for, and iV ,iS,iC,iR are the indices within these domains
for the space-time, spin, color and complex component respectively. The coalescing condition can
be read off when assuming thread-parallelisation takes place on the space-time index domain, i.e.
adjacent threads (thread number iV ) access adjacent memory locations.

The generated kernels are not exclusively pure streaming kernels, i.e. kernels including non-
local quantities like Uµ(x)ψ(x+ µ̂) incur non-coalesced memory accesses. The performance of
these kernels is a non-trivial function of the launch geometry. For these compute kernels we use
a low-overhead auto-tuning step. This auto-tuning determines experimentally a thread block size
which maximizes the kernel performance.

On distributed memory systems evaluating non-local quantities introduce data dependencies
on lattice sites resident to neighboring compute nodes. This provides the opportunity to overlap
off-node (MPI) communication with kernel computation. Since the node-local lattice is logically
shaped as a Nd-dimensional hypercubic grid the face sites, i.e. the sites to send off-node, can be
easily determined for such quantities. The node-local lattice is decomposed into “inner sites” and
“face sites”. While off-node data is in transition the inner sites are evaluated first and after data
has been received the remaining sites are evaluated. Our overlapping implementation is limited to
nearest neighbor operations only. Quantities involving next-to-nearest neighboring site communi-
cations, like ψ(x+ µ̂ + ν̂), execute the right-most offsets in a non-overlapping fashion.
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Figure 1: Performance comparison of QDP++ on Intel Sandybridge CPUs (left bar) and QDP-
JIT/PTX on single NVIDIA K20Xm (middle bar) and K40m (right bar) in double precision. For
each benchmarking function the performance for several volumes was measured. We use the fol-
lowing abbreviations: M for SU(3) field Uµ(x)a,b, V for “color vector” V (x)a, D for Dirac fermion
ψ(x)α,a, H for Dirac half fermion ψ(x)α ′,a. The number of lattice sites is given by Nvol = L4 with
L given in the legend.

6. Performance Measurement

Our experimental results were acquired on the Jefferson Lab 12k cluster. Nodes of this cluster
contain dual-socket Xeon E5-2650 CPUs (total of 16 cores) running at 2.0 GHz. Each processor
comprises 20 MB L3 cache. The nodes run CentOS 6.2. We used two nodes, one node with
four NVIDIA K20Xm GPUs and another node with four K40m GPUs (GK110(B) architecture)
installed. The K20Xm (K40m) has as a peak performance of 1.3 (1.4) TFlops (DP) and a peak
memory bandwidth of 250 (288) GB/sec (ECC disabled). We used the CUDA toolkit version 5.5
and the NVIDIA UNIX x86-64 kernel module version 319.37.

We use the t_linalg program which is included as one of the QDP++ example applications.
This program measures the performance of several linear algebra kernels. We compare the perfor-
mance achieved by QDP-JIT/PTX utilizing a single GPU of the installed GPUs on this compute
node with that of standard QDP++ utilizing both CPUs. We use an SSE-optimized version of the
“parscalar” architecture in double precision and use 32 OpenMP threads.

Figure 1 shows the performance comparison of QDP++ on the Sandybridge CPUs and QDP-
JIT/PTX on a single NVIDIA K20Xm and K40m in double precision. The general observation is
that for “sufficiently large” problem sizes the GPU performs much better than the CPU. The CPU
falls out of cache for volumes larger than 164 sites. Note that this benchmark has an “artificial
character” since it exercises the same evaluation repeatedly. The CG algorithm with an even-
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odd preconditioned pure Wilson operator in single precision falls on this system already for local
volumes larger than 124 out of cache. The GPU performs better nearly throughout starting from
84 sites. In the regime where the CPU is still within cache the K20Xm resp. K40m provide
speedup factors of ≈ 2.2 resp. ≈ 2.7 for a single GPU. We carried out weak scaling tests to the
full compute node configuration and observed perfect scaling, thus another factor 4 is achieved
when considering the whole compute node. The regime of larger local volumes is where the GPUs
provide huge speedup factors. For the 324 volume a single K40m achieves a speedup factor of≈ 10
over the CPUs.

We found that on the NVIDIA Kepler architecture the generated compute kernels sustain 79%
of the peak memory bandwidth, which is the appropriate metric of efficiency, since the kernels in
LQCD computations are memory bandwidth bound on this architecture.

7. Conclusion

The QDP-JIT/PTX framework pursues a quite sophisticated approach in order to provide an
efficient implementation of the QDP++ library targeting the CUDA architecture. The PETE library
is leveraged to build code generators for the PTX assembler language. A comprehensive CUDA
memory management was added to the library so that applications can run unaltered on GPU
clusters and supercomputers.

8. Outlook

QDP-JIT/PTX is an evolving framework which will integrate beneficial features and opti-
mizations as they become available. This includes for example new CUDA features like “unified
memory”.

We are looking into “expression fusion” in cases where there’s still head room in the register
file to hold a subsequent evaluation operating partially on the same fields as the previous one.

Further optimizations can be applied by exploiting the algebraic properties of the SU(3) group
and represent an element with fewer floating-point numbers. The QUDA library [10] applies this
successfully.

Work is underway to interface our code generator to the compiler framework LLVM. This will
allow us to target other architectures like x86, IBM Blue Gene/Q and Intel Xeon Phi.

9. Code Availability and Compatibility

The latest development version of the QDP-JIT/PTX library is always available in a publicly-
accessible source code repository [11]. Applications using the QDP++ library can be build on
top of QDP-JIT/PTX instead without any modifications to the source code. NVIDIA GPUs with
compute capability 2.0 or higher are supported.
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