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We report on the results of the first-principle numerical study of spontaneous breaking of chiral
(sublattice) symmetry in suspended monolayer graphene due to electrostatic interaction, which
takes into account the screening of Coulomb potential by electrons on σ -orbitals. In contrast to
the results of previous numerical simulations with unscreened potential, we find that suspended
graphene is in the conducting phase with unbroken chiral symmetry. This finding is in agreement
with recent experimental results by the Manchester group [6]. Further, by artificially increasing
the interaction strength we demonstrate that suspended graphene is quite close to the phase tran-
sition associated with spontaneous chiral symmetry breaking, which suggests that fluctuations of
chirality and nonperturbative effects might still be quite important.
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Introduction

In recent years significant effort has been invested into numerical studies of the electronic
transport properties of ideal monolayer graphene [1]. Since the electromagnetic coupling constant
in graphene is effectively enhanced by the factor c/vF ≈ 300, where c is the velocity of light and vF

is Fermi velocity, charge carriers turn out to be strongly coupled, and various non-perturbative phe-
nomena such as spontaneous breaking of chiral (sublattice) symmetry can emerge. The existence
of an insulating phase associated with chiral symmetry breaking is one of the central questions for
the theory of graphene. Since analytic calculations become in general unreliable in the vicinity
of the phase transition, the position of the transition point can only be found from first-principle
numerical simulations.

In the seminal works [2] it has been realized that the low-energy effective theory of graphene
at neutrality point can be efficiently simulated by the Hybrid Monte-Carlo method, which is com-
monly used in lattice Quantum Chromodynamics (QCD). In the more recent work [3] Hybrid
Monte-Carlo method was applied to perform a direct simulation of the tight-binding model of
monolayer graphene (the possibility of such simulations was also discussed in [4]). In these sim-
ulations only the nearest-neighbour hopping for the π orbitals was considered, and inter-electron
interactions were described by the Coulomb law (with some finite on-site interaction potential).
So far all simulations, both with the low-energy effective theory and with the tight-binding model,
have indicated that at the critical coupling constant αc ≈ 1 there is a semimetal-insulator phase
transition associated with the emergence of a mass gap in the quasiparticle spectrum due to spon-
taneous chiral symmetry breaking. According to these results suspended graphene, for which the
effective coupling constant is αs = e2/h̄vF ≈ 300/137 ≈ 2.2, should be deeply in the insulating
gapped phase with broken chiral symmetry (we note also that in this phase graphene is in fact
anti-ferromagnetic [5]).

However, these findings are in clear contradiction with recent experimental studies of the
Manchester group [6], in which no indications of the existence of a mass gap in suspended mono-
layer graphene were found. Till now the origin of this discrepancy between experimental and nu-
merical data was not clear. In this paper we demonstrate that if one takes into account the screening
of the Coulomb potential due to electrons on σ -orbitals of carbon, the interaction between electrons
should be even stronger than in suspended graphene in order to trigger the semimetal-insulator
phase transition. To this end we perform Hybrid Monte-Carlo simulations of the tight-binding
model of monolayer graphene with the partially screened inter-electron interaction potential ob-
tained in [7] in the constrained random phase approximation (cRPA). In the calculations of [7]
only the screening due to σ -orbitals was taken into account, thus one can use it as an input to the
tight-binding model of electrons on π-orbitals without any double-counting of screening terms.

The observed shift of the phase transition thus eliminates the controversy between experi-
mental and numerical results and opens up the possibility of much more realistic first-principle
Monte-Carlo simulations of the electronic properties of graphene. We further demonstrate that
a rather mild increase of interaction strength do leads to spontaneous chiral symmetry breaking.
Due to such proximity of the transition point, nonperturbative effects can be quite important in
suspended graphene.

Since the screening of the Coulomb potential due to σ -orbitals is mostly important at small
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distances of the order of lattice spacing [7], it seems that the position of the semimetal-insulator
phase transition is highly sensitive to the form of the inter-electron interaction potential at short
distances. We note that the high sensitivity of low-energy effective theory to ultraviolet regulariza-
tion was also discovered in the work [8], where fermionic propagators were found to be saturated
by momenta of the order of inverse lattice spacing.

The fact that in suspended monolayer graphene the effective inter-electron interaction should
be weaker than in the tight-binding model for the π orbitals was also noted in [9] by fitting the
numerical value of the renormalized Fermi velocity vF (α) to the experimental data of [6]. The
corresponding value of α was estimated as α ∼ 0.7 . . .0.9, which is significantly smaller than αs.
Recent semi-analytic studies of the gap equations in graphene [10] has also shown that the phase
transition is shifted to larger couplings if one takes into account the renormalization of the Fermi
velocity. Our results provide a microscopic explanation of these findings.

1. Simulation algorithms

The starting point of our simulations is the tight-binding Hamiltonian with the staggered po-
tential m:

Ĥtb =−κ ∑
<x,y>

(
â†

y âx + b̂†
y b̂x +h.c.

)
+∑

x
±mâ†

x âx ±mb̂†
x b̂x. (1.1)

where κ = 2.7eV, the sum ∑
<x,y>

is performed over all pairs of nearest-neighbour sites of the

graphene hexagonal lattice (we impose periodic spatial boundary conditions as in [3]) and â†, â
and b̂†, b̂ are the creation/annihilation operators for particles and holes, respectively. The latter
are related to creation/annihilation operators ĉ†

x,s, ĉx,s for electrons with spin s =↑,↓ as âx = ĉx,↑,
b̂x =±ĉ†

x,↓, where we take the plus sign for x belonging to one of the simple sublattices of graphene
hexagonal lattice and the minus sign - for another simple sublattice [4, 3]. The whole Hilbert space
of the tight-binding model can be constructed by the action of the creation operators â†

x , b̂†
x on the

ground state |0⟩ fixed by the conditions âx |0⟩= 0, b̂x |0⟩= 0. In this ground state each lattice site is
occupied by one electron with spin down. Of course, in Monte-Carlo simulations we sum over all
possible states of the system, so this choice of the ground state is only motivated by calculational
convenience.

The staggered potential is equal to +m for the sites of one simple sublattice and −m for sites of
another simple sublattice. Its role is twofold: first, it regularizes the inverse of the fermionic kinetic
operator in the Hybrid Monte-Carlo algorithm [3, 4]. Second, the staggered potential explicitly
breaks the chiral (sublattice) symmetry and thus serves as a seed for spontaneous chiral symmetry
breaking, which would otherwise be impossible in a finite volume. In the low-energy effective
theory m corresponds to the Dirac mass.

Next we introduce the interaction Hamiltonian with an inter-electron interaction potential Vxy:

ĤC =
1
2 ∑

x,y
Vxyq̂xq̂y, (1.2)

where q̂x = â†
x âx − b̂†

x b̂x is the operator of electric charge at lattice site x.
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For the on-site interaction potential Vxx ≡ V00 and the potentials between nearest (V01), next-
to-nearest (V02) and next-to-next-to-nearest-neighbouring lattice sites (V03) we use the values cal-
culated in [7] (see table I, 3d column). At larger distances we use the Coulomb potential V (r) =
1/(εσ r). The form of the potential is additionally corrected to account for periodic boundary con-
ditions. The factor εσ ≈ 1.41 describes the contribution of electrons on σ orbitals to the effective
dielectric permittivity of graphene monolayer at intermediate distances and is obtained by equat-
ing V03 to the Coulomb potential at r = r03 = 0.284nm: V03 = 1/(εσ r03). Physically this means
that we assume that all the charges which screen the potential of a test charge are localized within
the radius r03. It is important to stress that this large-distance correction of the potential by a
factor 1/εσ alone is insufficient to prevent the semimetal-insulator phase transition in suspended
graphene. Indeed, since for the unscreened Coulomb potential the corresponding critical value
of the coupling constant αc ≈ 1 [2, 3] is more than two times smaller than the effective coupling
constant αs ≈ 2.2 in suspended graphene, the coefficient εσ should be at least larger than 2 in
order to shift the phase transition to α > αs. Since two-dimensional fermions cannot screen the
three-dimensional Coulomb potential at asymptotically large distances, in this limit V (r) should
approach the unscreened Coulomb potential V (r) = 1/r. However, with lattice sizes which we use
in our simulation this asymptotics is in fact not yet relevant.

We proceed by making the standard Suzuki-Trotter decomposition of the partition function:

Tre−β(Ĥtb+ĤC) = Tr
(

e−δ(Ĥtb+ĤC)
)Nt

= Tr
(

e−Ĥtbδ e−ĤCδ e−Ĥtbδ . . .
)
+O

(
δ 2) , (1.3)

where β = (kT )−1 is the inverse temperature and δ = β/Nt with Nt ≫ 1. The factors in the last line
of (1.3) are now interleaved with decompositions of the identity operator over Grassmann coherent
states:

I =
∫

dψdηdψ̄dη̄ e
−∑

x
ψ̄xψx−∑

x
η̄xηx |ψ,η⟩⟨ψ,η | ,

|ψ,η⟩= e
−∑

x
ψxâ†

x+ηxb̂†
x |0⟩. (1.4)

The matrix elements ⟨ψ,η |e−δ Ĥtb |ψ ′,η ′⟩ can be now easily calculated using the identity

⟨ψ|e
∑
x,y

â†
xAxyây

|ψ ′⟩= exp

(
∑
x,y

ψ̄x
(
eA)

xy ψ ′
y

)
. (1.5)

In order to find the matrix elements of the exponent of the interaction Hamiltonian ĤC we perform
the Hubbard-Stratonovich transformation [4]:

exp

(
−δ

2 ∑
x,y

q̂xVxyq̂y

)
∼=
∫

Dφx exp

(
−δ

2 ∑
x,y

φxV−1
xy φy − iδ ∑

x
φxq̂x

)
, (1.6)

where V−1
xy is the matrix inverse of the potential Vxy: ∑

z
V−1

xz Vzy = δxy. After that we again apply

the formula (1.5) to the last line of (1.6) and finally arrive at the following functional integral
representation of the partition function:

Tre−β Ĥ =
∫

Dφx,nDψx,nDηx,nDψ̄x,nDηx,ne
−S[φx,n]− ∑

x,y,n,n′
(η̄x,nM̄x,y,n,n′ηy,n′+ψ̄x,nMx,y,n,n′ψy,n′)

, (1.7)
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where S [φx,n] =
δ
2 ∑

x,y,n
φx,nV−1

xy φy,n is the action of the Hubbard field φx,n and n = 0 . . . 2Nt −1

enumerates the factors in the last line of (1.3). The fermionic part of the action is written as
follows:

∑
x,y,n,n′

ψ̄x,nMx,y,n,n′ψy,n′ =
Nt−1

∑
k=0

[
∑
x

ψ̄x,2k (ψx,2k −ψx,2k+1)−δ κ ∑
<x,y>

(
ψ̄x,2kψy,2k+1 + ψ̄y,2kψx,2k+1

)
+∑

x
ψ̄x,2k+1

(
ψx,2k+1 − e−iδ ϕx,k ψx,2k+2

)
+δ ∑

x
±mψ̄x,2kψx,2k+1

]
.(1.8)

In this expression the Grassmann variables ψx,2k and ψx,2k+1 label the fermionic coherent states
inserted between the factors e−Ĥtbδ , e−ĤCδ and e−ĤCδ , e−Ĥtbδ in (1.3), respectively. It can be shown
that such a “double-layer” structure of the action leads to discretization errors of the order of δ , in
contrast to simpler fermionic action constructed in [4], for which discretization errors scale as

√
δ .

In practice, this form of the action allows one to obtain numerical results with sufficiently good
precision even at quite coarse lattices (Nt ∼ 10 . . .20, δ ∼ 0.1κ). We also impose anti-periodic
boundary conditions in time direction on fermionic variables ψx,n, ηx,n in (1.8).

Now the Grassmann variables in (1.7) can be integrated out, which yields the following repre-
sentation of the partition function:

Tre−β Ĥ ∼=
∫

Dφx,ne−S[φx,n]|det(M [φx,n]) |2. (1.9)

The manifest positivity of the integration weight in (1.9) is due to the symmetry between parti-
cles and holes for graphene at neutrality point. For example, at finite chemical potential the two
fermionic determinants appearing in (1.9) after integration over ψx,n and ηx,n in (1.7) would no
longer be complex conjugate, which would make Monte-Carlo simulations much more difficult
due to the fermionic sign problem. For our choice of the inter-electron interaction potential, the
action of the Hubbard field S [φx,n] is also a positive definite quadratic form. Thus we can generate
the configurations of φx,n by a Monte-Carlo method and calculate physical observables as averages
over the generated configurations. Here we follow [3, 4] and use the Hybrid Monte-Carlo method
with the Φ-algorithm. Inversion of the fermionic operator M, which is the most difficult part of this
algorithm, was accelerated using GPUs.

In order to detect the chiral symmetry breaking, we calculate the chiral condensate, which is
the difference of particle numbers on the two simple sublattices A and B:

⟨∆n⟩= 1
N
⟨ ∑

x∈A
(â†

x âx + b̂†
x b̂x)− ∑

x∈B
(â†

x âx + b̂†
x b̂x)⟩, (1.10)

where N is the overall number of sites of one sublattice of hexagonal lattice. In terms of the
fermionic operator Mx,y,n,n′ this expectation value reads:

⟨∆n⟩= 1
NNt

2Nt−1

∑
n=0

⟨ ∑
x∈A

M−1
x,x,n,n − ∑

x∈B
M−1

x,x,n,n ⟩, (1.11)

where the average is now taken over configurations of the Hubbard field with the weight (1.9).
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Figure 1: The dependence of the chiral condensate on the ε (the left figure) and comparison of the results
at low and high temperatures (the right figure).

2. Results and discussions

Our simulations were performed on the lattice with spatial size 18× 18 and Nt = 20, δ =

0.1eV−1, which corresponds to the temperature T = 0.5eV = 5.8 ·103 K. This temperature is con-
siderably higher than in real experiments, however, in our simulations it is the temperature of the
electron gas only. We do not consider thermal fluctuations of the crystalline lattice, thus phonon
temperature is formally zero. To study the behavior of the condensate (1.10) in the limit m → 0, we
perform simulations at five different values of the staggered potential: m= 0.1, 0.2, 0.3, 0.4, 0.5eV.
The interaction strength is controlled by additionally rescaling the potential by some factor ε :
Vxy →Vxy/ε .

The coefficient ε can be thought of as the dielectric permittivity of the medium surrounding
the graphene monolayer. However, to make this interpretation physically consistent one should
also redo the calculations of [7] taking into account this additional screening. In our case ε has no
direct physical interpretation and is only used to characterize the proximity of suspended graphene
(which corresponds to ε = 1) to the phase transition. For each set of lattice parameters we have
generated 100 statistically independent configurations of the field φx,n.

The dependence of the chiral condensate (1.11) on ε for ε ≤ 1 is illustrated on Fig. 1 on the
left side. To obtain the plotted values of ∆n, we have fitted the mass dependence of the condensate
∆n(m) by a quadratic function of m and used this fit to extrapolate ∆n(m) to m = 0. These fits are
shown on Fig. 1 in the inset. One can see that the extrapolated value ∆n(m → 0) for suspended
graphene (ε = 1) is equal to zero within error range, which indicates the absence of chiral symmetry
breaking. We have also checked this result on the larger (24×24, Nt = 20, δ = 0.1eV−1) and finer
(24×24, Nt = 40, δ = 0.05eV−1) lattices and on the larger set of 250 configurations of φx,n. All
our measurements confirm that after extrapolation to m = 0 the chiral condensate is equal to zero
for suspended graphene.

Only at ε < εc ≈ 0.7 the extrapolation to m → 0 yields nonzero chiral condensate, which
suggests that the state with broken chiral symmetry is favoured, and spontaneous chiral symmetry
breaking is likely in the infinite volume limit. The fact that the critical value εc ≈ 0.7 is quite close
to one suggests that while suspended graphene is still in the conducting phase with unbroken chiral
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symmetry, the proximity of the phase transition can still manifest itself in large fluctuations of order
parameter (chiral condensate) and in other non-perturbative phenomena.

One can argue that the above mentioned effect of zero condensate at ε = 1 can be a conse-
quence of rather high temperature in our simulations. It means that insulating phase can still appear
for suspended graphene at low temperatures. To eliminate this possibility, we have performed the
calculations at sufficiently low temperature T = 0.125eV. The comparison of the condensates for
high and low temperature simulations is presented on Fig. 1 on the right side. The results are
very similar, the condensate is approximately zero in chiral limit. There is a marginal distinction
of the condensate from zero in case of low temperature simulation. It can be a consequence of
finite-volume effects.

Conclusion

We conclude that the screening of the Coulomb potential by electrons on σ -orbitals strongly
influences the insulator-semimetal phase transition in monolayer graphene, so that the transition
point is shifted into the region of parameter space in which the interaction strength is even stronger
than in suspended graphene. This shift provides possible explanation of the long standing discrep-
ancy between numerical [2, 3] and experimental [6] data on spontaneous gap generation in sus-
pended graphene. We also note an intriguing possibility to effectively enhance the inter-electron
interactions by stretching the graphene layer [7], which can be used to reach the transition point in
experiment.
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