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The Higgs boson discovery at the LHC with a mass of approximately 126 GeV suggests, that the

electroweak vacuum of the standard model may be metastable at very high energies. However,

any new physics beyond the standard model can change this picture. We want to address this

important question within a lattice Higgs-Yukawa model as the limit of the standard model (SM).

In this framework we will probe the effect of a higher dimensional operator for which we take a

(φ†φ)3-term. Such a term could easily originate as a remnant of physics beyond the SM at very

large scales.

As a first step we investigate the phase diagram of the model including such a (φ†φ)3 operator.

Exploratory results suggest the existence of regions in parameter space where first order transi-

tions turn to second order ones, indicating the existence of a tri-critical line. We will explore the

phase structure and the consequences for the stability of the SM, both analytically by investigat-

ing the constraint effective potential in lattice perturbation theory, and by studying the system

non-perturbatively using lattice simulations.
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1. Introduction

In 2012 a boson was discovered at the LHC with a mass around 126 GeV. Experimental results

suggest, that this particle is compatible with the standard model Higgs boson [1, 2]. Subsequent

analyses following this discovery consolidated this interpretation, although a final proof is still

missing. With the discovery of the Higgs boson and the measurement of its mass, the standard

model (SM) is complete in the sense that in principle all its parameters are known. On the other

hand, the SM cannot account for a number of phenomena observed in nature such as the quark mass

hierarchy, the baryon asymmetry of the universe, the amount of CP violation and the existence of

dark matter. Thus, at some yet unknown energy, the SM is expected to be replaced by some more

comprehensive theory which can, hopefully, explain these physical phenomena.

The SM itself can provide information on its validity. This originates from the fact that the

possible mass range of the Higgs boson is bounded and that those bounds depend on the cutoff of

the theory. The upper bound is related to the triviality of the theory, i.e. the observation that the

quartic coupling runs to zero when the cut-off is sent to infinity [3]. The lower Higgs boson mass

bound is determined by the requirement, that the electroweak vacuum is stable.

Theoretical developments indicate, that a Higgs boson with a mass below ≈ 129 GeV results

in a metastable vacuum [4], although this result is still affected by uncertainties coming mainly

from present errors of the strong coupling constant and, in particular, the top quark mass. The

scale at which this metastability occurs can be estimated from the evolution of all standard model

couplings from the electroweak scale up to the Planck scale. The metastability then results from

the fact, that the quartic coupling turns negative at a certain energy scale. These calculations are

performed solely within the framework of the SM and no extensions are considered.

As a consequence of triviality the cutoff cannot be removed and the SM needs to be considered

as an effective theory only. This allows the inclusion of higher dimensional operators in the theory

which can be interpreted as being induced by some physics beyond the SM. A possible minimal

extension of the standard model would be, to add a dimension-6 operator, namely a (φ†φ)3-term, to

the scalar part of the standard model. This term with a positive coupling λ6 stabilizes the effective

potential even in case of negative quartic self coupling.

In this work we investigate the influence of such a dimension-6 operator in the framework of

a Higgs-Yukawa model, which is a reduction of the standard model to only consider the complex

scalar doublet and quarks. For our computations we will use a lattice regularization of the Higgs-

Yukawa model employing a chirally invariant lattice formulation. Eventually we want to test, how

strongly one can alter the lower Higgs boson mass bound and the vacuum structure of the theory,

if a (φ†φ)3-term is present. Results from an analysis of the renormalization group approach in a

Z2-symmetric Higgs-Yukawa model suggest, that the mass bound indeed can be decreased [5].

As a first step we will map out the phase structure of the model in the presence of such a

λ6 (φ
†φ)3-term, since the more complicated Higgs potential may lead to additional phase transi-

tions which can put bounds on the parameters of the theory. The exploration of the phase diagram

will be carried out non-perturbatively by means of numerical simulations and the results will be

compared to (lattice) perturbative calculations of the constraint effective potential.
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2. Higgs-Yukawa model and implementation

The field content of the Higgs-Yukawa model is given by a fermion doublet Ψ = (t,b)T and

the scalar complex doublet ϕ . We restrict ourselves to the simple case of one fermion doublet

with mass degenerate quarks even though in principle a more general case would be possible but

significantly more computertime expensive. In the continuum notation the action is given by:

Scont[ψ̄ ,ψ ,ϕ ] =
∫

d4x

{

1

2

(

∂µϕ
)†
(∂ µϕ)+

1

2
m2

0ϕ†ϕ +λ
(

ϕ†ϕ
)2

+λ6

(

ϕ†ϕ
)3
}

+
∫

d4x
{

t̄ /∂ t + b̄/∂b+ y(ψ̄Lϕ b
R
+ ψ̄Lϕ̃ t

R
)+h.c.

}

, (2.1)

with ϕ̃ = iτ2φ∗ and τ2 being the second Pauli matrix. The bare standard model parameters are

given by m2
0 and λ for the Higgs potential and y for the Yukawa coupling. Further, we added the

dimension-6 operator λ6

(

ϕ†ϕ
)3

to the action.

For the numerical implementation of this model we us a polynomial hybrid Monte Carlo algo-

rithm [6] with dynamical overlap fermions. Details of the implementation can be found in [7]. On

the lattice, it is convenient to rewrite the bosonic part of the action in an Ising model like way:

SB[φ ] =−κ ∑
x,µ

φ†
x

[

φx+µ +φx−µ

]

+∑
x

(

φ†
x φx + λ̂

[

φ†
x φx −1

]2
+ λ̂6

[

φ†
x φx

]3
)

. (2.2)

Here the scalar field is represented as a real four-vector and the relation to the continuum notation

is given by:

ϕ(x) =
√

2κ

(

φ2
x + iφ1

x

φ0
x − iφ3

x

)

, m2
0 =

1−2λ̂ −8κ

κ
, λ =

λ̂

4κ2
, λ6 =

λ̂6

8κ3
. (2.3)

For the determination of the phase structure, we employ the magnetization m as order parameter.

The magnetization is given by the modulus of the average scalar field and is related to its vacuum

expectation value (vev) via:

m =

〈∣

∣

∣

∣

1

V
∑
x

φx

∣

∣

∣

∣

〉

, vev =
√

2κ ·m. (2.4)

3. Constraint effective potential

To compare our numerical results to perturbation theory we employ the constraint effective

potential (CEP) [8, 9]. The basic idea is that the potential U(v̂) that only depends on the zero mode

ν̂ of the scalar field corresponding to its vacuum expectation value (vev). If one assumes that the

groundstate of the system is at a non-vanishing vev, the scalar doublet can be decomposed into

the Higgs mode and three goldstone modes. The perturbative calculations are done by explicitly

keeping the lattice regularisation, i.e. for the fermionic determinant the overlap operator is used and

all sums over lattice momenta are performed numerically. A derivation of the constrained effective

potential used here can be found in [10]. The CEP up to the first order in λ and λ6 is given by:

U(v̂) =U f (v̂)+
m2

0

2
v̂2 +λ v̂4 +λ6v̂6

+λ · v̂2 ·6(PH +PG)+λ6 ·
(

v̂2 · (45P2
H +54PGPH +45P2

G)+ v̂4 · (15PH +9PG)
)

. (3.1)
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The fermionic contribution U f comes from integrating out the fermions in the background of a

constant field:

U f (v̂) =− 4

V
∑
p

log

∣

∣

∣

∣

ν(p)+ y · v̂ ·
(

1− 1

2ρ

)

ν(p)

∣

∣

∣

∣

2

, (3.2)

with ν(p) denoting the eigenvalues of the overlap operator corresponding to the momentum p:

ν(p) = ρ



1+
i
√

p̃2 + rp̂2 −ρ
√

p̃2 +(rp̂2 −ρ)2



 , p̂2 = 4∑
µ

sin2
( pµ

2

)

, p̃2 = ∑
µ

sin2
(

pµ

)

. (3.3)

The propagator sums for the Higgs and the Goldstone bosons are given by:

PH =
1

V
∑
p6=0

1

p̂2 +m2
H

, PG =
1

V
∑
p6=0

1

p̂2
. (3.4)

We note, that even though we use the continuum notation, all quantities are meant to be dimen-

sionless, i.e. the lattice spacing is set to one implicitly. The vev is given by the minimum of the

potential, and by setting it to the phenomenologically known value of vev of 246 GeV one obtains

a physical scale in this approach:

dU(v̂)

dv̂

∣

∣

∣

∣

v̂=vev

!
= 0, Λ =

246 GeV

vev
. (3.5)

Further, the squared Higgs boson mass m2
H is determined by the curvature of the potential at its

minimum:
d2U(v̂)

dv̂2

∣

∣

∣

∣

v̂=vev

= m2
H . (3.6)

Due to the explicit appearence of the Higgs boson mass in the propagator sum (3.4), we have to

use an iterative approach to solve the CEP. To this end, we fix the parameters m2
0, y, λ and λ6 and

iterate eqs. (3.5,3.6) until we find convergence.

4. Results

As already mentioned, this work is a first step towards a systematic investigation whether

it is possible to alter the lower Higgs boson mass bound if in addition to the ordinary standard

model Higgs potential a dimension-6 operator λ6(φ
†φ)3 is included. To this end, we have to map

out the bulk (non-thermal) phase structure. The question is where phase transitions occur and of

which order these phase transitons are. In order to separate the cut-off scale from the low-energy

quantities, we have to search for 2nd order phase transitions. On the other hand, it is natural to

expect the appearance of 1st order phase transitions in the presence of the dimension-6 operator.

We would like to be certain that our study of the Higgs-boson mass bounds is performed away

from these 1st order phase transitions. Locating the tri-critical line in the λ -λ6 plane is then the

first task of our investigation. In all calculations we will keep the Yukawa couplings fixed to obtain

the physical top quark mass for which we follow ref. [11] and use the tree-level relation

y =
mt

vev
=

175 GeV

246 GeV
. (4.1)

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
5
8

Stabilizing the electroweak vacuum by higher dimensional operators in a Higgs-Yukawa model Attila Nagy

For our study we have employed two values of the coupling λ6 and for each we choose a set

of values for λ ≤ 0. With the Yukawa coupling fixed according to (4.1)1, there is only one free

parameter left, namely m2
0 which is directly related to κ according to (2.3). We then perform scans

in κ to determine regions of broken and symmetric phases corresponding to clearly non-zero and

almost zero values of the magnetization.

In figure 1 we show results comparing curves obtained from numerical evaluations of the CEP

(3.1) and direct numerical simulations performed on rather small lattices of volume V = 123 ×24.

For both tested values of λ6 depending on the choice of λ there is quite clear evidence for either

second or first order phase transitions.
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Figure 1: These plots show the magnetization as it is obtained in simulations (open squares) and from the

CEP (dots) for two values of λ6. Both, the simulations and the evaluation of the CEP were done on 123×24

lattices. The left plot shows results for a rather small value of λ6 = 0.1 and the agreements between per-

turbative and non-perturbative determination is quite good, whereas the agreement for the non-perturbative

case of λ6 = 1 can only be considered as qualitative.

To test, whether some of the transitions we observe are of first order, we show the Monte Carlo

time trajectories for the magnetization for a chosen set of κ-values in figure 2. There three neigh-

boring kappa values are shown and one can observe, that while the smallest and the largest values

of κ lead to stable runs, the middle value shows metastabilities where the system jumps between

two values of the magnetization. It is also possible, to access the CEP from the simulation data.

Up to a constant, the CEP can be related to the logarithm of the histogram of the magnetization,

see e.g. [12].

To address the question how the addition of the λ6-term alters the Higgs mass bounds, we

are so far restricted to the mass determination from the CEP. The standard model lower Higgs

boson mass bound is obtained by setting λ to zero [11]. If a λ6 coupling is switched on, we find a

behaviour of the Higgs boson mass as shown in figure 3 for λ6 = 0.05 and 0.1. In both cases, it is

possible, to find (negative) values for λ , that allow a significant decrease of the Higgs boson mass

for intermediate cutoffs without entering the region of first order phase transitions discussed above.

In fig. 3 we show finite volume, but also the infinite volume curves demonstrating that that the shift

in the mass survives the infinite volume limit.

1The couplings λ and λ6 in this section are the dimension-less couplings in the continuum notation and may not to

be confused with the parameters being rescaled by powers of
√

2κ
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Figure 2: The left plot shows the Monte Carlo time trajectories of the magnetization corresponding to

simulation data for λ =−0.4 from fig. 1a where one observes a typical metastable behaviour for κ = 0.11672

with the magnetization jumping between two values. The runs of adjacent κ do not show this behaviour.

The right plot shows the CEP as it is obtained from the simulation for those three values of κ . Both plots

nicely indicate the existence of a first order phase transition.
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Figure 3: Here we show the dependence of the Higgs boson mass on the cutoff as it is obtained in the CEP.

The left plot compares the results for various values of λ on a 963 × 192 lattice while keeping λ6 = 0.1

constant. Additionally we show the standard model lower bound indicated by the red points. The gap

in the gray data points originates from the first order phase transition. The right plot shows the volume

dependence for various L3 × 2L lattices while keeping λ = −0.388 and λ6 = 0.1 fixed. It also shows the

volume dependence of the standard model mass bound.

5. Conclusions and outlook

In this work, we have added a dimension-6 operator to a Higgs-Yukawa model to test the

stability of a so extended SM. We found that for fixed values of λ6 = 0.1 and for a cutoff of

about & 1.5TeV, the Higgs boson mass can be lowered when the quartic coupling is driven more

and more negative, as was also found in ref. [5]. In addition, we detected that for a certain (negative)

value of the quartic coupling the transition between the symmetric and the broken phase turns first

order and the separation between the cut-off and the low-energy scale is lacking, leading to an

absolute lower bound of the Higgs boson mass. With this we conclude that for the here considered

value of a λ6 coupling a Higgs boson mass of 126GeV is fully compatibale with an addition of a
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φ6 term. In addition, since such a term is quadratically suppressed with the cutoff, it has no effect

at very high energies.

An interesting question remains, however, namely what happens at very large values of λ6 =

O(10). Will there be clash with the Higgs boson mass value leading to bounds of the λ6 coupling

like in the case of our fourth fermion investigation [13]. Or, can it even be possible that are a low

values of the cutoff of O(10TeV) a metastable behaviour can be found? We plan to address these

question in the future by studying larger values of the λ6 coupling.
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