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Gauge theories with fermions in two-index representations Yigal Shamir

1. Introduction

Asymptotically free gauge theories can differ from QCD in several wdyessnumber of colors
N¢, the number of flavordls, and the fermions’ representation. These theories are interesting for
purely theoretical reasons, and also as templates for physics beyo&thttiard Model. There is
a growing body of numerical work devoted to them (for a recent revéew,Ref.[[IL]).

As the number of flavors is increased, typically the two-loop coefficieth®beta function

2 g' g®
B(g ) = _bl 1612 - b2(16n-2)2 +o (11)

will flip sign before the one-loop coefficient. The rangeNytvalues wherdo; > 0 > b, defines
perturbatively the conformal window, where the running coupling isatirio an infrared-attractive
fixed point (IRFP). Unlike QCD, in that case no physical scale is géeedynamically, and the
long-distance behavior of all correlation functions is predicted to followwagy law.

The existence of an IRFP requires nonperturbative confirmation. ®articinteresting are
borderline theories in whiclN; is close to the critical value where the perturbative conformal
window is entered.

We have carried out a long-term program of studying gauge theoriesvanying number of
colors, and with fermions in various two-index representations. We odrate on two observables.
The first is the nonperturbative beta function, which we define and metdwough the Schrédinger
functional (SF) scheme. The second is the mass anomalous dimggswwmch we define as usual
from the scaling behavior afiy. Thanks to chiral symmetry (of the massless continuum theory),
we may in fact extracy, from the scaling of the isospin-triplet pseudoscalar density, which in turn
is much better behaved on the lattice, and which we have measured on thensaméles used to
determine the running coupling.

Previously, we studied gauge theories with fermions in the symmetric two-iegesgentation
(B, B.[4.[5]. Here we will report on two more theories with fermions in a twaeirepresentation
[B]. These are the SU(3) theory wiltly = 2 Dirac fermions in the adjoint representation, and the
SU(4) theory withNs = 6 Dirac fermions in the antisymmetric representation, which is a sextet.
ChoosingN; = 6 places that theory near the bottom of the perturbative conformal window

2. Slow running

The SF setup was originally developed aiming for a precise numerical detgionirof the
evolution of the QCD coupling. Using the SF setup in a different gaugeyheastraightforward.
But our analysis tools must be adapted to a new situation where the coupldig has at all.

To appreciate this difference consider Hifj. 1, where, as an examplshove the two-loop
beta function for two different SU(2) theories, each containing two Diesimions in a given
representation. In the left panel the fermions are in the adjoint refeggen The (perturbative)
fixed point is clearly visible. In the right panel, the downward pointing etisvthe beta function
of the theory with fermions in the fundamental representation. Much like Qi®beta function
is always negative, and grows in absolute value with increasing coupling.

The other curve in the right panel, which embraces the horizontal axiscesagain the beta
function of the adjoint-fermions theory. The visual difference relativinéoleft panel comes from
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Figure 1. Two-loop beta function in SU(2) gauge theories. See texékplanation.

the different vertical scales. The lesson from this comparison is thatumiegs beta function so
much smaller than that of a QCD-like theory is bound to be substantially moreutiffic
The prime dynamical question about any massless asymptotically free theshgiker its

infrared physics is conformal, or, alternatively, confining and with broghiral symmetry. When
the coupling runs slowly, in order to probe interesting values of the redi@edacoupling already
the bare coupling must be quite strong. As a result, unlike in QCD simulationselp#iturbation
theory is not applicable at the lattice scale in our simulations, and cannateros with any
guidance. At the same time, as we will see, new analysis methods can bepaelvébat are
especially tailored to slow running.

3. Nonperturbative beta function

We use Wilson-clover fermions. The links in the Dirac operator are nHY Risgddinks that
are subsequently promoted to the fermions’ representation. The georfetny 8F lattices is
hypercubical with equal size= Nain all four directions. For most values of the bare parameters
studied, we performed simulations fidr= 6,8, 10,12, 16. Full details can be found in Ref] [6].

Instead of the usual beta functidn (1.1), it is convenient to introduceettaaefbnctionﬁ(u) for
u=1/g? define as
_ d(1/g?)
~ dlogL

B(u) =2B(¢?)/g* = 2u*B(1/u). (3.1)

Were the beta functioﬁ(u) constant, the running coupling would take the form
u(L) =co+cilog(L/(8a)) , (3.2)

wherecy is u(L = 8a), andc; is the constant value (ﬁ(u). In Fig.[2 we show our results for the
running coupling in the two theories. The straight lines are fits to [Ed. (3.2)eofesults from all

volumes at each fixed set of bare parameters. It is evident from thigfigat, over the range of
volumes we studied, a constant beta function is a reasonable first apptimn of the data. As we
go upwards in the figure, both the bare and the renormalized couplingsngdier. For reference,



Gauge theories with fermions in two-index representations Yigal Shamir

0.4 - T b
L e 7 07 @/@/@/@ E
| 0.6/ E
303* — 3 0.5 -
r‘\‘v L g ‘T‘v L 4
o 4 o
4 M 7
o]
02 G o @ . 0.3 i
Q/®’®/®/@
@ e — 021 -
T e — 5 &— —8
4 o a
0 R B SR RS 0l =
.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
alL alL

Figure 2: A semilog plot of the running coupling/t® vs. a/L in the SU(3)/adjoint theory (left) and the
SU(4)/sextet theory (right).

the dotted blue lines show the slopes of one-loop running (noté(luaﬁs constant in the one-loop
approximation).

In order to extrapolate our results to the continuum limit we make use of the folioobser-
vation. If the coupling did not run at all, the only obstruction to Hq.](3.2) lkdne discretization
errors. Much like in a free theory, in the absence of any dynamical staldiscretization errors
would necessarily depend @jL only. Indeed we may then identify the lattice spacawith
1/Lmin, WhereLmi, is the smallest lattice size included in the fit {3.2). By repeatedly dropping the
smallest lattice, we should get better and better estimates of the continuum-limit @aldering
all lattice sizes a1 < Ly < ... < L, we denote bycgk),c(lk) the parameters obtained from a fit in
which the smallest size kept wag. We can then extrapolate &L = O either linearly,

d = B(u)+C(a/Ly) (3.3)
or quadratically,
o = B(u) +Cla/Li)2 (3.4)

The results of both types of extrapolation, along with the results of the sim{@3i, are
shown in Fig[B. As can be seen, substantially bigger computation resaamdér better observ-
ables would be required to establish the presence or absence of aimlfRieBe theories.

For a very small lattice spacing or, equivalently, for very largé, ultimately the linear
discretization error must dominate. As it turns out, even in the one-looxzipmation linear
and quadratic discretization errors remain comparable in size over the ramtiye of volumes we
have. (We discussed this in some detail regarding a different slowlyingrtheory in Ref.[[4].)
Therefore there is no good reason to prefer one type of error oeeottier, and, in principle,
we must allow for linear and quadratic discretization errors simultaneouslge 8ur data are not
precise enough to allow for such a combined extrapolation, the resultafpes of extrapolation
must be considered as models.

Equation [3:R) is exact only in the limit of a constant beta funcﬁc()u). In reality, as we have
discussed in Ref[]2], the slow changeﬁ(u) will give rise to higher powers of log. As a better
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Figure 3: Beta functionfa’(u) of the SU(3)/adjoint theory (left) and the SU(4)/sextettye(right), extrapo-
lated to the continuum limit. The points for the extrapalat have been displaced slightly for clarity.

approximation of the continuum evolution we may therefore take
u(L) = co+crlog(L/(8a)) +czlog? (L/(8a)) - (3.5)

In principle we could then perform a similar continuum-extrapolation proeety repeatedly
dropping the smallest volumes, now using Hq.](3.5) as our basic fit. Oraie, ayr data are
not precise enough to obtain meaningful results this way. We stressyaowleat the extrapola-

tions (3:B) and[(3]4) based on Ef. [3.2) both have good quality, showéngtterm like log is
unnecessary given our statistical error.

4. Mass anomalous dimension

In the approximation that the coupling does not run at all, the pseudosealanmalization
constanZp follows a power law. Accordingly, for each set of bare parameterditwe

logZp(L) = co+celog((8a)/L) , (4.1)

where nowc; gives an estimate for the mass anomalous dimengiokiVe plot the results of these
fits in Fig. [4, together with the results of linear and quadratic continuum etaépns following
the same procedure as before. Unlike the beta function, here the arsaeimain quite small even
after the continuum extrapolation.

Focusing first on the SU4/sextet theory, we see that at weak couplmgsuits agree with
one-loop perturbation theory. But fgzz?:, ym levels off, becoming practically independent of
g?. A similar behavior, although a bit noisier, is seen in the SU(3)/adjoint thdbrythe case of
the rightmost (strongest coupling) point, we could not overcome the lottg@uelations of the
observable. The results marked by the orange brackets come fronafhstiieat agreed with each
other, after discarding an outlier stregt [6].]

The leveling off ofy, is a remarkable feature, common to all of the theories with fermions
in two-index representation we have studifld[J2[]3,]4, 6]. This is a simgrissult, that, to our
knowledge, was not predicted by any perturbative calculation.
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Figure 4: Mass anomalous dimensigm(g?) of the SU(3)/adjoint theory (left) and the SU(4)/sextetttye
(right), plotted as a function af?(L = 8a).

5. N scaling

In the course of our work we have studied two gauge theories eachirdogtéwo Dirac
fermions in the adjoint representation: the SU(2) thedly [2] and, heeeSth(3) theory. It is
interesting to look for trends a4 is changed[]7].

Fig.[3 shows this comparison. Here we only compare the basic lineaf fitsf¢8.2)e beta
function and [(4]1) for the mass anomalous dimension. The results suggekirgeN. scaling
works quite well down to the smallest valdg = 2 (including any discretization error that is
present in the plots). We note, however, that unlike the SU(2) theorgremve established the
existence of an IRFP, the SU(3) theory could be confinlihg [8].

6. Conclusions

While somewhat disappointing, in view of the difficulties explained in Sec. 2 ibisurprise
that the extrapolations of our data for the nonperturbative beta functsnt in rather large errors.

Our results for the mass anomalous dimension are much nicer. They hdyeiaall errors
even after the continuum extrapolation. The surprising leveling off ahgtomupling leads to a
scheme-independent universal bougd< 0.5, a bound that applies t@ll the theories we have
studied in the course of this research program.

A second look at the continuum extrapolations of the beta function of thd)&dktet theory
(Fig.[3, right panel) may reveal a hint of the behavior known as “walkiwgere the beta function
first gets very close to zero, and then veers off. Accordingly, aftaryntkecades of almost no
running, eventually the couplings grows strong enough to trigger chiratretry breaking and
confinement. Walking theories can naturally accommodate a light composite, sehieh can
arise as a pseudo Nambu—Goldstone boson of the spontaneously bpgkeximate dilatation
symmetry. For a recent discussion of whether this scalar could be idemifiedhe 125 GeV
particle discovered at the LHC, see R¢}. [1].
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Figure5: N scaling.

Even if walking technicolor can explain the existence of a light Higgs particlgualify as a
successful theory of Electro-Weak symmetry breaking it has to providechanism for the gen-
eration of lepton and quark masses as well. Traditionally, this was done dlitigvan “extended”
technicolor theory. For this mechanism to meet phenomenological constigpitally a large
mass anomalous dimensiop, ~ 1, was invoked. Our results for, therefore cast doubt on the
ability to use any of the theories we have studied as (extended) techniaoldidates.
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