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In search for a composite Higgs boson (techni-dilaton) in the walking technicolor, we present
our preliminary results on the first observation of a light flavor–singlet scalar in a candidate the-
ory for the walking technicolor, the N f = 8 QCD, which was found in our previous paper to have
spontaneous chiral symmetry breaking together with remnants of the conformality. Based on sim-
ulations with the HISQ-type action on several lattice sizes with various fermion masses, we find
evidence of a flavor-singlet scalar meson with mass comparable to that of the Nambu-Goldstone
pion in both the small fermion-mass region, where chiral perturbation theory works, and the inter-
mediate fermion-mass region where the hyperscaling relation holds. We further discuss its chiral
limit extrapolation in comparison with other states studied in our previous paper: the scalar has
a mass much smaller than that of the vector meson, which is compared to the Nambu-Goldstone
pion having a vanishing mass in that limit.
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1. Introduction

Recently a Higgs boson with mass around 125 GeV was discovered at LHC. While it is con-
sistent with the one in the Standard model (SM), there still exists a possibility that it is a composite
particle in an underlying strongly coupled gauge theory. One such example is the techni-dilaton
predicted as a naturally light fermionic bound state in the walking technicolor having approximate
scale symmetry and a large anomalous dimension γm ∼ 1 [1]. A composite Higgs as the techni-
dilaton is a pseudo Nambu-Goldstone (NG) boson of the spontaneously broken approximate scale
symmetry and is shown to be phenomenologically consistent with the current LHC data [2]. Thus
the most urgent theoretical task to test the walking technicolor would be to check whether or not
such a light flavor-singlet scalar bound state exists using first-principle calculations on the lattice.
(For reviews on the lattice studies in search for candidates for the walking technicolor see [3].)

Actually, in a previous work [4], we observed a flavor-singlet fermionic scalar meson (σ)
lighter than the "pion" (corresponding to the NG pion in the broken phase) in the N f = 12 QCD,
which was studied by us in another paper on the same setting [5] and was consistent with a con-
formal theory. Since the conformal theory should have no bound state ("unparticle") at the exact
chiral limit, the light bound states are only possible in the presence of the fermion mass m f in such
a way that it produces the confining forces (blowing-up coupling) in the infrared region below the
fermion mass scale. A light scalar in such theory would not be regarded as a composite Higgs
boson. Nevertheless the walking theory should have a similar light scalar bound state in a simi-
lar conformal dynamics, with the role of m f replaced by the dynamically generated mass of the
fermion.

In this paper we indeed observe a light flavor-singlet scalar σ in the N f = 8 QCD, which was
shown to be a good candidate for the walking technicolor in our previous work [6]. The σ we
observe could be a first evidence of a candidate for the composite Higgs as a techni-dilaton on
the lattice. As in N f = 12 QCD [4], we extract the mσ from the correlation function of the 0++

fermion bilinear operator, which consists of both connected and (vacuum subtracted) disconnected
contributions. We find that the σ is as light as the NG pion similarly to N f = 12 QCD [4]. As
suggested by our previous work [6] on other quantities, an approximate hyperscaling behavior is
also expected for the mσ in the relatively heavier m f region, while near the chiral limit where the
spontaneous chiral breaking effects become dominant, the mσ should be described by a polynomial
function as a perturbation of m f . We then discuss the chiral limit extrapolation of mσ in a way
consistent with the chiral perturbation theory.

In the next section, we explain the simulation setup and the methods for the flavor-singlet
scalar measurement. In Section 3, we show the results on the correlation functions, the mσ as a
function of m f . In Section 4, we summarize our results and discuss the implications of light scalar
in the chiral limit for a composite Higgs scenario. All the results shown here are preliminary.

2. Lattice setup

The gauge configurations for SU(3) gauge theory with eight fundamental fermions are gen-
erated by the HMC algorithm with tree-level Symanzik gauge action and HISQ (highly improved
staggered quark) action without tadpole improvement and mass correction in the Naik term. By
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using two degenerate staggered fermion species, we carry out simulations on three different lattice
volumes (V = L3) L = 18,24, and 30, with fixed aspect ratio T/L = 4/3 at a single lattice spac-
ing (β ≡ 6/g2 = 3.8) for five different fermion masses (m f = 0.02,0.04,0.06,0.08,0.10). For each
parameter, we accumulate more than 5000 trajectories, and perform measurements every 2 trajecto-
ries. Such a number of configurations allows us to obtain a reasonable signal of mσ . The statistical
error is estimated by the standard jackknife method with bin size of more than 100 trajectories.

For the measurement of the flavor-singlet scalar, we use the following local staggered fermion
bilinear operator

OS(t) = ∑
i

∑
x

χ̄i(x, t)χi(x, t), (2.1)

where i denotes the staggered fermion species, i = 1,2. Using this operator we measure the two-
point correlation function 〈OS(t)OS(0)〉 ∝ 2D(t)−C(t), where C(t) and D(t) are the connected
and the vacuum subtracted disconnected correlators, respectively. The factor 2 in front of D(t)
is due to the number of species. For the calculation of D(t), which is essential to estimate the
σ correlator, we need to calculate the inverse of the Dirac operator for all the space-time points
(x, t). In order to reduce the computational cost of the inversion, we use the stochastic estimator
with noise vectors for space-time and color. The large fluctuation coming from random noise can
be efficiently reduced by employing the noise reduction technique for staggered fermions [7, 8],
which was already applied in previous studies, for example, the calculation of the flavor-singlet
pseudo-scalar [8, 9], the chiral condensate [10], and also the σ in N f = 12 QCD [11, 4]. The
chosen number of noise vectors for each gauge configuration is 64 to sufficiently suppress the
fluctuation of random noise compared to gauge fluctuation. We tested the calculation method in
the N f = 12 QCD case as reported in Ref. [4].

In the staggered fermion formulation, the scalar operator in Eq.(2.1) overlaps not only with the
σ , but also with the pseudo-scalar state (πSC), which is the staggered parity partner of σ and has
the staggered spin-taste structure (γ4γ5 ⊗ξ4ξ5). In order to reduce the contribution from the parity
partner we use the projection C+(t) ≡ 2C(t) +C(t + 1) +C(t − 1) at even t. The full correlator
2D+(t)−C+(t) in the large t region behaves as

2D+(t)−C+(t) = Aσ (t), (2.2)

where AH(t) = AH(e−mH t +e−mH(T−t)). The connected correlator C+(t) in the large t region can be
regarded as Aa0(t) where a0 is the flavor non-singlet scalar state. Thus, the asymptotic behavior of
2D+(t) is given by

2D+(t) = Aσ (t)+Aa0(t). (2.3)

This means that both 2D+(t)−C+(t) and 2D+(t) can be used to extract mσ from their ground state
masses, if mσ < ma0 . We will discuss this point later. Another projection C−(t) ≡ 2C(t)−C(t +
1)−C(t −1) at even t is also used to obtain the πSC state, which is the parity partner of a0.

3. Result

Figure 1 shows a typical result of −C(t) and 2D(t) for L = 30, m f = 0.02. As shown in the
figure, we can obtain a good signal for 2D(t) thanks to a large statistics and the noise reduction
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technique. In the large t region, 2D(t) behaves as a smooth function of t. This result indicates
that the taste symmetry breaking effects on the parity partner are small [4] thanks to utilizing the
HISQ-type action. The smallness of the taste symmetry breaking was also observed in other meson
masses in our previous work [6].
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−C(t)
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Figure 1: Connected −C(t) and disconnected 2D(t) correlators for L = 30, m f = 0.02.

The left panel of Fig. 2 shows all the parity-projected correlators constructed from the C(t) and
D(t) for L = 30, m f = 0.02. We see that the full correlator 2D+(t)−C+(t) at large t is dominated
by 2D+(t). Accordingly, the effective mass obtained from 2D+(t) becomes consistent with that
obtained from 2D+(t)−C+(t) as shown in the right panel of Fig. 2. This property allows us to
evaluate the flavor-singlet scalar mass from the correlator 2D+(t). The advantage of using 2D+(t)
is that the plateau appears at small t owing to the cancellation between the a0 and the contamination
from excited states of the σ . The plateau of 2D+(t) enables us to determine the effective mass with
relatively smaller statistical error. We fit 2D+(t) with a single cosh form in the range tmin = 6 and
tmax = T/2 to obtain mσ for all the values of m f . Comparing this with the rest of spectrum, we find
that the σ is not heavier than πSC, whose effective mass corresponds to the one of C−(t) in the right
panel of Fig. 2. As for the a0 corresponding to −C+(t), the result would suggest ma0 > mσ , as we
expected, although we do not obtain a good effective mass plateau in our lattice volume.
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Figure 2: Parity-projected correlators for the different channels constructed from C(t) and D(t) (Left), and
their effective masses (Right) for L = 30, m f = 0.02.

The left panel of Fig. 3 presents fit results of the mσ as a function of m f for each volume,
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Figure 3: (Left) Flavor-singlet scalar mass mσ as a function of m f for each volume. The errors are only
statistical. For comparison also plotted are mπ and mρ observed in Ref. [6]. (Right) Comparison of the mσ
data with the hyperscaling curve(s) for the value(s) of γ observed in Ref. [6] (see text), with the absolute
value normalized to the data at L = 24, m f = 0.06.

together with other masses mπ and mρ taken from Ref. [6]. The errors are only statistical. The two
results on the different volumes L = 18 and 24 at m f = 0.04 are consistent within the statistical
error, so that we expect finite size effects to be small at heavier m f . It is remarkable that all the mσ

results at the measured m f are comparable to mπ . This feature is different from that of ordinary
QCD with small N f , and similar to the one observed in N f = 12 QCD [4]. It is also to be noted that
mσ is much smaller than mρ .

Since we observed an approximate hyperscaling relation of other physical quantities for rela-
tively heavy m f , m f ≥ 0.05, interpreted as a remnant of conformality in our previous study [6], we
also expect it for σ in this region. We plot the hyperscaling curves mσ = C(m f )1/(1+γ) in the right
panel of Fig. 3, where γ = 0.6,0.8 and 1.0 are values of mπ , mρ and Fπ , respectively, observed in
Ref. [6], and the value of C is matched to the σ data at m f = 0.06, L = 24. The data are roughly
consistent with the hyperscaling relation with γ = 0.6−1.0 within the errors.

On the other hand, the small m f region, m f ≤ 0.04, was shown to be consistent with the
spontaneous chiral symmetry breaking [6]. We have seen in Fig. 3 that σ is much lighter than ρ ,
and is as light as π all the way down to the small m f region well described by the chiral perturbation
theory, at least in the present data. This would imply a light composite scalar in the chiral limit in
the walking theory.

4. Summary and Discussion

We have observed for the first time a light flavor-singlet scalar meson in the N f = 8 QCD,
which was shown to be a good candidate for the walking technicolor theory in our previous study.
The observed mass is as light as the one of π in the simulation parameters region. Measuring
disconnected correlator was critical to the achievement. Our results are encouraging in search for
the walking technicolor in view of the 125 GeV Higgs at LHC.

Although our results are very preliminary and the statistical error is large, we discuss the chiral
limit extrapolation of mσ . As we observed in the previous paper [6], other physical quantities in
the small m f region are described by the chiral perturbation theory fit. In Fig. 4 we plot the results
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of ChPT-like fits of mπ and mρ with the range 0.015 ≤ m f ≤ 0.04 (4 data) using the following fit
functions [6],

m2
π = cπ

1 m f + cπ
2 m2

f , mρ = cρ
0 + cρ

1 m f + cρ
2 m2

f . (4.1)

From the data in this region, we try to estimate the mσ in the chiral limit. Note that σ in the chiral
limit can be a bound state only in the presence of fermion mass dynamically generated by the chiral
symmetry breaking, which breaks scale symmetry explicitly as well as spontaneously. Hence its
chiral limit mass should not be zero in the same way as ρ , so that the chiral fit should have the
same functional form as that of ρ . We carry out the chiral extrapolation with just the lightest two
points on L ≥ 24 and hence use the linear fit,

mσ = cσ
0 + cσ

1 m f . (4.2)

The fit result is shown in Fig. 4. The value in the chiral limit reads mσ = 0.08(7). Then we have
mσ

mρ
= 0.5(5),

mσ

Fπ/
√

2
= 4(4), (4.3)

in the chiral limit (Fπ/
√

2 corresponds to fπ = 93MeV in the real-life QCD). Note that in a typi-
cal walking technicolor model, the one-family (four-weak-doublets) model with N f = 8, we have
Fπ/

√
2 ' 123GeV. Within the error our results accommodate the 125 GeV Higgs boson.

Here we note another possible signature of the walking behavior to be observed on the lattice
data. As we mentioned above, when the chiral symmetry is spontaneously broken, the chiral limit
of mσ should be non-zero due to the very presence of the dynamically generated mass of the
fermion, while mπ should go to zero as a NG boson for the same reason (non-zero dynamical
mass). Hence, if mσ < mπ for larger m f as in our data, the chiral extrapolation of mσ and mπ

must be crossing to mσ > mπ at a certain smaller m f . This never occurs in the conformal phase,
since all the masses should obey the hyperscaling relations, and the ratio of mσ/mπ becomes a
constant towards the chiral limit. Therefore, the observation of such a crossing phenomenon could
be another signal of a walking theory. This will occur in much smaller m f region than in the
present calculation, as seen from our rough chiral extrapolation in Fig. 4. In order to directly check
the crossing on the lattice, we will need simulations at even smaller fermion masses and larger
volumes.

Besides increasing statistics and obtaining more accurate mσ results in future, we shall con-
struct a flavor-singlet scalar operator by gluonic operators (glueball) to check a consistency be-
tween the ground state masses extracted from different operators, as was studied in the N f = 12
QCD [4, 12]. We also would need to investigate lattice discretization effects in this theory.

Acknowledgments

Numerical calculations have been carried out on the high-performance computing system ϕ
at KMI, Nagoya University, and the computer facilities of the Research Institute for Information
Technology in Kyushu University. This work is supported by the JSPS Grant-in-Aid for Scientific
Research (S) No.22224003, (C) No.23540300 (K.Y.), for Young Scientists (B) No.25800139 (H.O.)
and No.25800138 (T.Y.), and also by Grants-in-Aid of the Japanese Ministry for Scientific Research
on Innovative Areas No.23105708 (T.Y.). E.R. was supported by a SUPA Prize Studentship and a
FY2012 JSPS Postdoctoral Fellowship for Foreign Researchers (short-term).

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
7
0

A light composite scalar in eight-flavor QCD on the lattice Hiroshi Ohki

0 0.01 0.02 0.03 0.04
mf

0

0.1

0.2

0.3

0.4

0.5

0.6

m
σ

L=30
L=24
L=18
mρ

mπ

Figure 4: Fit result of the chiral extrapolation for mσ . For comparison, other spectra of mπ and mρ and their
chiral fits in Ref. [6] are also shown.
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