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1. Introduction

The Standard Model Higgs is a fundamental scalar particle which is responsible for the elec-
troweak symmetry breaking and the mass generation of the Standard Model particles. Calculating
the quantum corrections to its own mass one finds [1]

M2
Hrem
−M2

H ∼ Λ
2 (1.1)

where Λ is the cutoff of the Standard Model. Since this cutoff could go up to the Planck scale
we have a fine tuning problem for the Higgs mass. To get rid of this problem, several possible
extensions to the Standard Model were proposed [1, 2]. One of these is Technicolor(TC) which
replaces the Higgs particle by a bound state of techniquarks. The interaction between these new
particles is supposed to be QCD-like which also introduce technigluons. Furthermore one has to
introduce new mechanisms to comply with phenomenology.
One proposal is the Minimal Walking Technicolor(MWT) [1]. The TC sector of this theory uses
the gauge group SU(2) and has two techniquarks in the adjoint representation and one technigluon.
Furthermore one has to introduce an extra pair of leptons. Since this theory is walking one finds
[1] 〈

QQ
〉

ETC ∼
(

ΛETC

ΛTC

)γ 〈
QQ
〉

TC (1.2)

where γ is the anomalous mass dimension of the techniquark propagator. As one sees this quantity
could enhance the chiral condensate on the Extended Technicolor(ETC) scale which in turn is
responsible for the masses of the Standard Model quarks. If we compare our theory to the observed
quark masses we find that γ should be of the order of one [1]. Yet there are a lot of results suggesting
that this quantity is substantially smaller [3, 4, 5]. Since these results used indirect methods, our
aim is to determine it directly by calculating the techniquark propagator.
The quark propagator is a gauge dependent quantity, therefore we will fix our gauge to minimal
Landau gauge. We implement the method described in [6]. On the other hand the anomalous mass
dimension is a gauge independent quantity. For this reason the gauge fixing procedure will not
influence our final result.

2. Calculation

All results presented in this paper were created using configurations provided by the authors
of [3, 7, 8, 9]. For details concerning their creation and properties see [9]. One important note is
that we expect a quasi-conformal behavior in the chiral limit [1]. Furthermore only configurations
for β = 2.25 with only a limited amount of lattice sizes were available. This limits the analysis of
the systematic errors.
The quark propagator in minimal Landau gauge in the continuum is parametrized by the scalar
functions A, B, M and Z

Sab (p) = δ
ab A

(
p2
)

γµ pµ +B
(

p2
)

A(p2)2 p2 +B(p2)2 = δ
abZ
(

p2) i/p+M
(

p2
)

p2 +M (p2)2 (2.1)

Z
(

p2)= 1
A(p2)

, M
(

p2)= B
(

p2
)

A(p2)
(2.2)

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
8
7

The anomalous mass dimension in MWT Daniel August

where γµ are the Euclidean Dirac matrices, Z is the wave-function renormalization and M is the
mass function. Using the latter parameters we can define the Schwinger functions [10, 11]

∆ν =
1
π

∞∫
0

d pcos(t p)
Z
(

p2
)

p2 +M (p2)2 (2.3)

∆s =
1
π

∞∫
0

d pcos(t p)
Z
(

p2
)

M
(

p2
)

p2 +M (p2)2 (2.4)

where ν refers to the vector part and s to the scalar part. The functions enable us to determine a
possible pole mass.
To calculate any of the before mentioned functions we use Wilson fermions

D(x,y) =−1
2 ∑

µ

(
1− γµ

)
Ua

µδx+µy +(m+4)δxy (2.5)

where Ua
µ are link variables in the adjoint representation. We retrieve these from the links in the

fundamental representation by

Ua
µbc =

1
2

tr
(

σ
bU†

µσ
cUµ

)
(2.6)

with the Pauli matrices σa. To obtain the quark propagator we have to invert and Fourier-transform
the Dirac operator D(x,y) for the Wilson fermions. The inversion is done with a standard biconju-
gate gradient inversion while we only use momenta in time direction for the Fourier-transformation
to make full use of the extended time direction, for details see [12]. Afterwards we apply lattice
corrections which ensure that we retrieve the continuum results for the free case. The code has
been thoroughly checked for the free case.
After this procedure we have to renormalize the A,B,Z and M functions. We have chosen the
following scheme

S (p = µ) =
1

−i/p+mq
(2.7)

The only question remaining is the value of mq. This problem is quite important because there is
no experimental data available for mq. One possibility would be to chose the bare mass but this
quantity becomes negative if we go to the chiral limit. For this reasons we have chosen the PCAC
mass mq = mPCAC given for some configurations in [3]. To get access to the remaining ones we
used linear extrapolation/interpolation.
Finally we have to set the scale. This task was already done in a preceding work investigating
technigluonic two-point and three-point functions [13]. In this work the mass of the scalar glueball
is set to 2 TeV. Following [14, 15] this state mixes with or is the Higgs. Therefore in light of the
recent LHC results [16, 17], we changed this procedure to get a Higgs mass of 125 GeV. To avoid
possible problems with this scale setting procedure we will present our results also in lattice units.

3. Mass function

To derive the anomalous mass dimension from the quark propagator we have to use a fit func-
tion which describes the mass function. Considering observations from the quenched calculation

3
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am0 Ns amPCAC mPCAC 2b γ f aM(0) M(0) −a〈Ψ̄Ψ〉 1
3 −〈Ψ̄Ψ〉 1

3

0.5 16 2.02 214 0.18(2) 0.967(6) 2.22(5) 235(6) 0.691(2) 73.2(3)
0.25 16 1.74 188 0.18(2) 0.972(8) 1.9(2) 205(22) 0.656(3) 70.9(4)

0 16 1.46 161 0.18(2) 0.980(8) 1.7(1) 187(11) 0.618(2) 68.0(3)
-0.25 16 1.18 133 0.17(2) 0.991(7) 1.41(2) 159(3) 0.573(1) 64.7(2)
-0.5 16 0.897 108 0.15(2) 0.99(2) 1.09(3) 131(4) 0.517(7) 62.0(9)
-0.75 16 0.617 83.9 0.11(2) 0.97(2) 0.78(7) 106(10) 0.446(5) 60.7(7)
-0.9 16 0.449 68.2 0.06(3) 0.96(2) 0.50(7) 76(11) 0.41(1) 62(2)
-0.95 16 0.393 62.1 0.01(7) 0.93(6) 0.51(17) 81(28) 0.37(2) 58(4)
-0.95 24 0.393 62.1 0.02(3) 0.96(2) 0.46(6) 73(10) 0.38(1) 60(2)
-0.975 16 0.365 62.8 0.04(11) 0.89(11) 0.34(18) 58(31) 0.36(2) 62(4)

-1 24 0.337 64.0 0.00(2) 0.97(2) 0.35(6) 67(11) 0.366(6) 70(2)
-1.05 24 0.277 67.9 0.02(4) 1.00(3) 0.26(5) 64(13) 0.346(6) 85(15)

Table 1: Fit parameters for the techniquark mass function. Dimensionful units are given in GeV.

in [12] we have to consider at least two different possibilities. The first is the mass function for the
chiral symmetric case

M
(

p2)= M (µ)

(
ω ln

p2

µ2 +1
)−γ

(3.1)

where γ is the mass anomalous dimension. On the other hand we looked also at the chirally broken
case

M
(

p2)= 2π2γ

3
−
〈
ΨΨ

〉
p2
(

1
2 ln p2

Λ2

)1−γ
(3.2)

where
〈
ΨΨ

〉
is the chiral condensate and Λ is the characteristic scale. To take both functions into

account we use the following regularised version

M
(

p2)= 2π2γ

3
−
〈
ΨΨ

〉
(p2 +a2)2b

(
1
2 ln p2+c2

Λ2

)1−γ
(3.3)

We will use this function to fit our resulting quark propagator while we leave all quantities as free
fit parameters.

4. Results

The results for the wave function renormalization and mass function are shown in figure 1. We
have given both functions in lattice and physical units. First of all we observe that the wave function
renormalization is one within systematic errors (which are not given in the plot) [12]. In the mass
function we observe an infrared enhancement which decreases for larger momenta. Applying the
fit function (3.3) to our result we find the fit parameters given in table 1. We see that b is close
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Figure 1: The wave function renormalization (left panels) and mass function (right panels) in lattice units
(top panels) and physical units (bottom panels) for different masses and volumes. For the case of lattice units
also fits are shown. Renormalization is performed at aµ = 1.

to zero for small quarks masses while γ is close to one. Furthermore the ratio M (0) to M (µ) is
close to one within errors for the smallest quark masses. Both observations indicate that there is no
spontaneous symmetry breaking for small quark masses. Following [5, 18] we would expect such
a behavior. On the other hand this could also be a finite volume effect. Therefore to resolve this
matter much more systematic investigations are required.
Another problem could be that the largest accessible momenta are not large enough with respect
to all other scales. This leads to an influence of the renormalization in our results. For example
using (3.1) as the fit form we find γ to be in range 0.2-0.3 which is in line with previous results,
e.g. [3, 4, 5]. Comparing (3.1) with (3.3) we find γp = 1− γ which means that the anomalous
mass dimension for the fit (3.3) is even closer to zero. This result suggest that also the fit form is a
systematic error.
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Figure 2: The vector (left panels) and scalar (right panels) Schwinger functions in lattice units (top panels)
and physical units (bottom panels) for different masses and volumes. For the case of lattice units also fits are
shown. Renormalization is performed at aµ = 1. The symbols are the same as in figure 1

5. Schwinger Functions

The Schwinger functions (2.3),(2.4) are shown in figure 2 in lattice and physical units. We
can conclude from the bending of all curves that the techniquarks do not posses a positive-definite
spectral function. We even observe zero crossings for larger masses. These observations imply that
the techniquark does not belong to the physical state space, yet this is not enough evidence to claim
that the techniquark is confined.
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