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Dynamical Triangulations provide us with a lattice regularization of four-dimensional Euclidean

quantum gravity within the realm of ordinary quantum �eld th eory. We add a local measure term,

which can also serve as a generalized higher curvature term, and explore an extended coupling

constant space. We determine the phase diagram of this model using non-degenerated triangu-

lations. A �rst order phase transition line is observed, but no second order transition point is

located. In consequence we cannot attribute any continuum physics interpretation to the so-called

crinkled phase of 4D dynamical triangulations.
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1. Introduction

The model of Dynamical Triangulations (DT) is based on the formalism of path integrals
and lattice regularization [1, 2]. Its objective is to quantize a theory of gravitation. In the path
integral formulation of quantum gravity, the role of a particle trajectory is played by the geometry of
four-dimensional spacetime. Dynamical Triangulations de�ne the way the pa th integral should be
calculated and speci�es the class of spacetime histories which should contrib ute to the path integral.
The discretization appears only as a regularization intended to be removed in the continuum limit.
No ad hoc discreetness of spacetime is assumed from the outset.

According to general theory of relativity, gravitation is encoded in spacetime geometry. The
considered degree of freedom is the geometry associated with the metric �eld gµν(x). A nonzero
curvature of the underlying spacetime geometry is interpreted as a gravitational �eld. The con-
struction of the quantum theory starts from the gravitational path integral over geometries,

Z =
Z

D[g]e�SEH [g]: (1.1)

Dynamical Triangulations provide a lattice regularization of the formal functional integral and
assumes that it can be represented via a sum over simplicial manifolds built of equilateral four-
simplices,

Z = ∑
T

e�SR[T ]: (1.2)

A four-simplex is a generalization of a triangle to four dimensions, it is composed of �ve vertices
connected to each other. The metric inside a simplex is �at. The four-simplices a re glued pairwise
along tetrahedral faces and the curvature is localized on triangles.

Because in DT all four-simplices are identical and equilateral, the classical Einstein-Hilbert
action

SEH [g] = �
1

16πG

Z

d4x
p

detg(R � 2Λ) ; (1.3)

has a very simple realization, the so-called Regge action,

SR[T ] = �κ2N2 +κ4N4; (1.4)

where N2 is the number of triangles and N4 number of four-simplices. Bare coupling constants
κ2; κ4 are related to the bare Newton’s constant G and the bare cosmological constant Λ, respec-
tively.

In the continuum limit, the bare cosmological constant has to be tuned to its critical value
κ4 � κc

4 . For κ4 below the critical value the partition function is divergent. Effectively, such model
has one coupling constants κ2. Two non-physical phases were observed, namely the crumpled
phase and branched polymers phase. The transition point turned out to be of �rst order [3]. Usually,
for critical systems on a lattice one can only associate continuum �eld theories to the �xed points
if the transition is higher than �rst order.

1.1 The measure term

As DT is a lattice regularization of Euclidean geometries it is natural to consider enlarged
coupling constant space involving higher curvature terms [4]. Additional coupling constants may
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enrich the phase structure and lead to a continuum transition. It was shown that matter �elds can
prevent the collapse into branched polymers. For example, for more than 2 non-compact U(1)
gauge �elds, the back-reaction of matter on geometry is strong enough to tra nsform the branched
polymer phase into smoother crinkled phase [6]. In the path integral (1.2) each triangulation carries
the same weight. Even in the continuum it is not clear which measure D[g] should be chosen for the
geometries. In the past, number of different choices of the measure for four-dimensional DT was
proposed. A quasi-equivalence was shown in [6] between the model with gauge �elds and with a
modi�ed measure,

∑
T

! ∑
T

N2

∏
t=1

oβ
t ; (1.5)

where ot is an order of triangle t. Such modi�ed measure introduces additional parameter β . Recent
work has renewed interest into probing the phase space of DT including such measure terms [7].

1.2 The numerical setup

Taking advantage of computer power we have today, we use Monte Carlo simulations to probe
ensemble of combinatorial triangulations. Every four-simplex is uniquely de� ned by a set of 5 dis-
tinct vertices. and two adjacent four-simplices share exactly one face. The Monte Carlo algorithm
uses a set of 5 ergodic local Pachner moves. We work in a pseudo-canonical ensemble of manifolds
with topology S4, and use the partition function

Z(κ2;κ4;β ) = ∑
T

N2

∏
t=1

oβ
t � e�[�κ2N2+κ4N4+ε(N4� flN4)

2]: (1.6)

The quadratic term proportional to ε �xes the total volume around some prescribed value flN4. To
achieve this the bare cosmological constant has to be tuned to its critical value κ4 � κc

4 . To deter-
mine the phase diagram of this model we will be exploring the coupling constant space (κ2;β ). For
given values of the coupling constants, we will approximate the expectation values of observables
O over Monte Carlo generated con�gurations:

hOicon f =
1

Ncon f

Ncon f

∑
i=1

Oi; (1.7)

where Ncon f is the number of independent con�gurations and Oi is the value of observable O

calculated for the ith con�guration.

2. The phase diagram

In order to determine the phase structure of the model we measured several observables such
as the average number of triangles hN2i and its susceptibility χ(N2) � (hN2

2 i � hN2i2)=N4. These
observables have been used in the past to distinguish between the crumpled phase and the branched
polymers phase. Another observable is the radius volume pro�le V (r). We de�ne a geodesic dis-
tance between two four-simplices as the length of the shortest path connecting these simplices.
Each path consists of linear segments joining centers of neighboring simplices. Given a con�gu-
ration T and a initial simplex i0, V (r; i0;T ) denotes the number of simplices at geodesic distance
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Figure 1: Density plots of the susceptibility χ(N2) (left) and the average radius (right) in the κ2 � β plane
for hN4i = 160000

r from i0. The average V (r) over con�gurations and initial points, and the average radius hri are
then given by

V (r) � h
1

N4
∑
i0

V (r; i0;T )iT ; hri �
1

N4
∑
r

r �V (r): (2.1)

We also look for the presence of so-called baby universes separated by minimal necks. A minimal
neck correspond to the smallest nontrivial boundary of a four-dimensional simplicial manifold. It
is a set of �ve tetrahedra, connected to each other, and forming a 4-simple x which is not present in
the triangulation. Cutting the triangulation along a neck splits the triangulation into two separate
parts. Because a minimal neck may contact other minimal necks, they equip triangulations with a
graph structure.

2.1 The grid

The original approach of Euclidean Dynamical Triangulations corresponds to β = 0. In this
case there exist only crumpled phase and branched polymers phase, separated by a �rst order
transition at κ2 � 1:29 [3]. At this point, we observe a peak of susceptibilities χ(N2) and a jump
in hri. There is also an abrupt change in baby universe structure, from collapsed graph (left of Fig.
2) to a fractal branched polymer structure (right of Fig. 2). The additional coupling constant β
may introduce new phases. We investigated a grid of points in the κ2 � β plane with β between 0
and �2 varied in steps of δβ = 0:2 and κ2 between 0:5 and 1:5 varied in steps of δκ2 = 0:1. This
region embraces the transition point β = 0;κ2 � 1:29. Plots of the susceptibility χ(N2) (left) and
the average radius (right) for the grid points (κ2 - horizontal axis, β - vertical axis) are shown in
Fig. 1. For negative β the maximum of variance χ(N2) (blue line) and a jump in hri (red line) do
not coincide any more. The branch polymer phase corresponds to large values of hri and the peak
of susceptibility is not a signal of phase transition.
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Figure 2: Minimal baby universe graph of a typical con�guration in, respectively from left to right, crumpled
phase, crinkled region and branched polymer phase.

We observe also a new hypotheticalcrinkledregion where properties of typical con�guration
are between those in crumpled phase and branch polymer phase. It is located around pointk2 =
2:0;b = � 2:0. The minimal baby universe structure in the crinkled region is very different from
the one in crumpled phase (cf. middle of Fig. 2). It is similar to a tree structure present in the
branched polymer phase, but contains loops which are identi�ed with triangles of high order. Such
triangles are not present in the two generic phases. The maximal order oftriangles seem to behave
like hMaxot i µ N0:16

4 . The transition from branched polymers to crinkled region is clear. The baby
universe structure does not change abruptly, but there is a jump inhri and a peak inc (logot) (cf.
Fig. 4). Below, we outline properties of typical con�gurations from the branched polymers phase,
the crumpled phase and the hypothetical crinkled region.

Branched polymers Crumpled Crinkled

Geometry elongated collapsed between
Singular none two vertices,ov µ N4 triangles of high order

sub-simplices link of orderol µ N2=3
4 ot µ N0:16

4

Baby universes dominate only small many, but no large
Baby universe tree-like collapsed contains loops

structure
Hausdorff dimension dh = 2 dh = ¥ large or in�nite
Spectral dimension ds = 4=3 ds = ¥ large or in�nite

2.2 The path

In order to verify the existence of the hypothetical crinkled phase mentioned before, we need
to perform simulations for various total volumes and check scaling of observables. We follow a
one-dimensional path shown in Fig. 3 (left). It starts at a point in crumpled phase and continuously
leads through crinkled region to stop at branched polymers phase. If there is a phase transition
between crumpled and crinkled phase, the path will have to cross it. As shown in Fig. 3, the
path consists of three segments marked with different colors: a vertical segmentI at k2 = 0:5, a
horizontal segmentII at b = � 2:0, a vertical segmentIII at k2 = 2:0. The measurements were
performed for three values of total volumeN4 = 40k;80k and 160k.
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