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1. Introduction

The discovery of the Higgs particle this year has greatly increased the effort of the lattice field
theory community in exploring models of the Higgs mechanism of spontaneous symmetry break
in a non-perturbative setting. It is widely accepted that the physics represented by the scalar Higgs
field within the electroweak sector of the Standard Model is an effective theory of higher energy
phenomena.

One such approach is to model the Higgs particle as a scalar bound state arising from con-
stituent “techni”-fermions interacting via a non-abelian “technicolor” gauge field, modelled on
QCD, and many talks at this conference have been devoted to finding the appropriate gauge sym-
metry and fermion content of that model. Another approach to achieving spontaneous symmetry
breaking is via the Hosotani Mechanism [1],[2], [3]. In this scenario, one introduces compactified
extra spatial dimensions; the Higgs field is then a manifestation of the zero-mode of the “normal”
gauge field in the theory.

2. The Hosotani Mechanism

The Hosotani Mechanism works in a space with at least one compactified dimension, which
is typically taken to be four-dimensional Minkowsky spacetime crossed with a circle: M3,1× S1.
On the lattice, we will use a Euclidian torus, and simply have one dimension small compared to
the others. In calculations of what situations give rise to the Hosotani Mechanism, there is nothing
special about the number of uncompactified dimensions (it is a parameter in the effective potential),
so for this study we take that number to be three. This choice makes lattice simulations much more
staightforward.

Clearly this is very similar to a finite temperature scenario, and it is important to understand the
differences and similarities between high temperature physics and the Hosotani Mechanism. The
gauge field is parameterized as Aµ(x,y), with y the coordinate of the compact dimension. When the
size of the compact dimension is small, the Matsubara frequencies of the A4 field are well separated
and only the lowest–the zero mode–is relevant. Thus A4(x,y) = A4(x) and essentially becomes an
scalar field in the uncompactified space. The dynamics and vacuum expectation value of this scalar
field are determined by the effective potential for A4, Veff(A4), which in turn is determined by the
fermion (and other field) content of the theory. In certain cases, particularly with adjoint fermions
having periodic boundary conditions, the A4 field develops a VEV which lies outside the center of
the gauge group, and the expectation is that the gauge symmetry is broken. Testing this scenario
non-perturbatively is the purpose of this study, as well as others at this conference [4] and [5].

For SU(N), the zero-mode of the A4 field is usually parameterized as

〈Ay〉=
1

gL

θ1
. . .

θN

 ,
N

∑
i=1

θi = 0

The calculation of the effective potential is standard [1].

Veff = ∑(±)
i
2

tr lnDMDM

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
0
2

Investigations of the Hosotani Mechanism... James E. Hetrick

where
DMDM = ∂

µ
∂µ −D2

y(θi).

We take the sign + or - for bosons or fermions, respectfully, yielding

Veff(θ) = ∑(±)
1
2

∫ dd p
(2π)d ∑

n
ln
{

p2 +
1

R2 (n+
(

θ

2π

)2}
The sums take the following forms for the gauge and ghost contributions, fermions in the

fundamental representation, and fermions in the adjoint representation.

Veff = V Aµ

eff +V ψ

eff, θN =
N−1

∑
i=1
−θi,

V Aµ

eff = −(d−2)
Γ(d/2)
πd/2Ld

N

∑
i, j=1

∞

∑
n=1

cos[n(θi−θ j)]
nd ,

V ψ,f
eff = Nf ·2[d/2] Γ(d/2)

πd/2Ld

N

∑
i=1

∞

∑
n=1

cos[n(θi−βf)]
nd ,

V ψ,ad
eff = Nad ·2[d/2] Γ(d/2)

πd/2Ld

N

∑
i, j=1

∞

∑
n=1

cos[n(θi−θ j−βad)]
nd .

The β ’s represent the boundary conditions (B.C.s) on the fields: ψ(y + 2πR) = eiβ ψ(y). d is the
dimension of the spacetime.

The complete effective potential Veff(θi) is the sum of the appropriate functions above. For
fermions in the fundamental representation, any B.C. we choose leads to a the minimum of the
effective potential in which the VEV for 〈A4〉 = diag(θ1,θ2,θ3) lies in the center of SU(3), and
hence the gauge symmetry is not broken. However, for fermions in the adjoint representation we
see that the potential functions have similar periods in θ1 and θ2, but have opposite signs. This
allows for interference between the gauge and fermion contributions to Veff and non-trivial minima
in which the VEV of 〈A4〉 lies outside the center of SU(3).

The possible cases are nicely summarized in [6]. There, four phases are defined as X, A, B,
and C. Additionally, this model–SU(3) gauge theory with 2 flavors of staggered fermions in four
dimensions with one direction much smaller than the others–was studied by Cossu and D’Elia in
[7]. Those authors found new phases as they made the radius of the compact dimension smaller
and smaller, which they called confined, deconfied, split, and reconfined. Table 1. below (taken
from [6]) summarizes these phases, the VEVs for A4 = diag(θ1,θ2,θ3), the values of the Polyakov
loops in the fundamental and adjoint representations, and the symmetry that commutes with the
Polyakov loop in the compact dimension.

The simulations in [6] and [7] confirm these results non-perturbatively, in that they show the
expectation values listed above for the Polyakov loops in each phase. The distributions of the
Polyakov loop values are also consistent with the effective potential forms shown above. The next
step is to investigate the nature of the local gauge symmetry breaking (if any) that occurs in the
different phases.
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Phase name: [6], [7] 〈(θ1,θ2,θ3)〉+ perms., mod 2π P3 P8 Symmetry

X , Confined Large quantum fluctuations 0 −1
8 SU(3)

A1,2,3, Deconfined (0,0,0),(±2
3 π,±2

3 π,±2
3 π) 1,e±2πi/3 1 SU(3)

B1,2,3, Split (0,π,π), (±2
3 π,∓1

3 π,∓1
3 π) −1

3 , 1
3 e∓πi/3 0 SU(2)×U(1)

C, Reconfined (0, 2
3 π,−2

3 π) 0 −1
8 U(1)×U(1)

Table 1: Phases of 4-dim. SU(3) gauge theory with two flavors of adjoint fermions, showing the locations
of the global minima of Veff(θi). P3 and P8 are the fundamental and adjoint Polyakov loop in the 4-direction.

3. Gauge Symmetry Breaking

To recap, as a simpler example of the Hosotani Mechanism in 4+1 dimensions, we study a
3+1 dimensional gauge theory with two staggered fermions having periodic B.C.s, and adjust the
gauge coupling β to vary the radius of the compact dimension. This situation is very similar to the
extensively studied case of gauge theories at finite temperature. In the finite temperature case, the
Polyakov loop also looses a global symmetry, in that case Z3. Thus it is important to understand
the differences between the deconfinement transition in finite temperature gauge theory and the
Hosotani Mechanism.

One of the most important features of dynamical symmetry breaking via the Higgs mechanism
is the appearance of massive gauge bosons, which transforms the physics of the theory significantly.
Thus we first look for indications of gauge symmetry breaking in the gluon propagator.

The lattices studied are listed below, and were generously provided for study by E. Itou and
her collaborators. They contain two flavors of staggered fermions. The standard Wilson action was
used for the gauge field and Kogut-Susskind action for the adjoint fermions.

Phase β dimensions fermion mass

Confined 5.30 163×4 0.1

Deconfined 5.70 163×4 0.1

Split 5.95 163×4 0.1

Reconfined 5.30 163×4 0.1

Table 2: Lattice ensembles used in this study, provided by E. Itou and collaborators

To check whether the gauge boson develops a mass, we compute the gluon propagator. We
define

Aµ(x) =
1

2ia

[
Uµ(x)−U†

µ(x)
]

Traceless

and fix the gauge to Landau gauge by iteratively maximizing the functional

I(Uµ ,G) = ReTr ∑
x

G†(x)Uµ(x)G(x+ µ)
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Figure 1: The gluon propagator in Landau gauge, measured on the ensembles and phases listed in Table 2.

with respect to G(x). The gluon propagator, defined in momentum space is:

< Âa
µ(q)Âb

ν(q′) >≡Dab
µν(q) =

(
δµν −

qµqν

q2

)
δ

abD(q2)

Figure 1 shows the average gluon propagator measured on each of the ensembles in Table 2.
The q2-weighted scalar part of the propagator, q2D(q2), is plotted, which is a standard way to plot
the gluon propagator (see for example, [8]).

What we find is a significant change in the propagator from the Confined to Deconfined
phase, but little change in the propagator as we move to the other broken-symmetry phases, split
[SU(2)×U(1)] and reconfined [U(1)×U(1)]. The flat line indicates that D(q2) is proportional to
1/q2, i.e. massless. Further, the behavior of the propagators in the “broken-symmetry” phases,
Split and Reconfined corresponding to the B and C phases in Table 1, show little change from the
SU(3) symmetric Deconfined (A) phase.

Another test was to compute the spatial correlator of time-like Polyakov loops. The decay of
this correlator is related to the glueball mass among other things, and one might hope to see some
indication of dynamical symmetry breaking in these correlators. As before, we compute them and
look for different qualitative behavior between the deconfined, split, and reconfined phases. The
quantity of interest is

c(r) = Re < TrP(x) TrP†(x+ r) >−< TrP TrP† >

and c(r) is plotted in Figure 2 for the ensembles in Table 2.
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Figure 2: The spatial correlator of Polyakov loops wrapped around the compact dimension

Again, we see a clear difference in behavior between the Confined and other phases, but little
difference between the Deconfined (A), Split (B), and Reconfined (C) phases.

As a final test, we computed the spatial correlator of elements of the time-like (compact direc-
tion) Polyakov loop matrix elements among themselves.

ci jmn(r) =< Pi j(x)P†
mn(x+ r) >

While these elements are gauge dependent, the hope is that if the gauge symmetry is broken, the
nature of the correlations would change amoung some subset of correlators. An example of our
results are shown in Figure 3, for the ensemble in the Split [SU(2)×U(1)] phase. What we see is
that the diagonal correlators 〈∑x pi j(x)pmn(x+ r)〉 in which i jmn = 0011, 1122, or 0022, are non-
zero, whereas all others are very small. This behavior persists on all ensembles–only the diagonal
elements have significant correlations between themselves.

4. Conclusions

It is encouraging that several groups within the lattice community are starting to explore the
Hosotani Mechanism non-perturbatively. The results of [5] show very good agreement between the
calculations of the effective potential Veff(θi) and the results of simulation, in which this potential
is extracted. The Polyakov loop in the cases studied indeed breaks the global symmetries as shown
in Table 1.

On the other hand, the local gauge field properties as displayed by the gluon propagator and the
P(x)P†(x) correlators in the Deconfined [SU(3) symmetric], Split [SU(2)×U(1)], and Reconfined
[U(1)×U(1)] phases shows very little qualitative difference.
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Figure 3: The spatial correlator of Polyakov loop elements in the Split SU(2)×U(1) phase.

It is quite possible that the behavior of the 3+1 model studied here (and in refs. [6] and [7] are
significantly different with respect to dynamical gauge symmetry breaking than what is expected
in the 4+1 dimensional model outlined in Hosotani’s original paper [1].

One interesting line of research to follow this work would be to explicitly write out the dimen-
sionally reduced 3- and 4-dimensional models, including the effective potential, Veff, produced by
the adjoint fermions, and see what differences occur.
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