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The anisotropic 5D SU(2) Yang-Mills model has been widely investigated on the lattice during
the last decade. In the case where all dimensions are large in size, it was previously claimed
that there is a new phase in the phase diagram, called the Layer phase. In this phase, the gauge
fields would be localized on 4D layers. Previous works claim that the phase transition to the
Layer phase is of second order, which would allow a continuum limit to be taken. We present the
extension of the previous work to large lattices, for which we found a first order phase transition.
This leaves the scenario that this 5D theory can be dimensionally reduced to a continuum 4D
field theory, doubtful.
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1. Introduction

Models with extra dimensions have been developed in order to investigate the gauge hierarchy
problem, the cosmological constant problem and the fermion mass hierarchy problem. In all of
these, the main requirement is to find a mechanism which dimensionally reduces the model to
the usual four-dimensional spacetime that we live in. This is achieved by compactification or
localization. The latter is based on the brane world scenario which visualises the observed world
as a four dimensional hyperplane embedded in the bulk. Many models were developed based on
this scenario, out of which the most well-known are the Randall-Sundrum (RS) and the Dvali-
Shifman (DS) models. In these, one of the main problems is to achieve localization of the gauge
fields on the branes.

In the early 1980s, Fu and Nielsen introduced the idea that one can achieve gauge field local-
ization by imposing an anisotropy between the interactions in the usual four-dimensional spacetime
and the extra dimension [1]. This anisotropy gives rise to a new phase, called the Layer phase, in
which the fields are free to propagate on the Layers (in the usual four dimensions) but are confined
in the extra dimension. So, one can think of the five-dimensional world as being reduced to many
non-interacting copies of four-dimensional layers embedded in an extra dimension.

This idea of the dimensional reduction of a system via localization in the presence of this
Layer phase has already been investigated for abelian and non-abelian groups. In the latter case,
the five-dimensional SU(2) Yang-Mills model was investigated using both the Mean-Field approx-
imation [2] and Monte Carlo numerical simulations [3, 4]. All works seem to agree that, when the
lattice spacing in the usual four dimensions is smaller than the lattice spacing in the extra dimen-
sion, the standard bulk phase transition that separates the confined from the deconfined phase in
the five-dimensional non-abelian gauge theory, becomes a second order phase transition. If this is
the case then one expects to be able to take a continuum limit, in the sense of the presence of a
non-trivial fixed point and thus be able to define a continuum four-dimensional field theory.

In this work, we present a summary of the extension of the previous Monte Carlo numerical
simulations to larger volumes to check the validity of the claim that there is a second order phase
transition into the Layer phase in the non-abelian pure gauge theory [5].

2. Lattice set-up

In this work, our interest focuses on the five-dimensional non-abelian pure gauge theory. The
exploration of this system, as mentioned in the introduction, requires an anisotropy between the
usual four dimensions and the extra dimension and, as a consequence, different lattice spacing in
the usual four dimensions (a4) and the extra dimension (as). This is achieved by imposing different
lattice couplings in the Wilson action for the plaquettes along space-time directions (f34) and along
the extra dimension (fB5). Therefore, the Wilson action of the model is given by

Sw=pY Y (1—NiTrU,W () +BY ¥ (1——TrUu5( )) @1

x 1<u<v<4 ¢ x 1<u<4

where the space-time plaquette is given by

Upy = Up(x)Uy (x+ fag) U (x+ Vag) Uy (x) (2.2)
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and the extra-dimensional plaquette is given by
Uus = Uu(x)Us(x+ fras) U} (x+ 5as)US (x). (2.3)

In order to recover the non-abelian pure gauge action in the continuum limit, we define the gauge
links to be

Uy = exp(igsasAy) and  Us =exp(igsasAs) 2.4)

and we recognise the relations between the lattice couplings B4, B5 and the lattice spacings a4, as
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where gs is the gauge coupling in the five-dimensional Yang-Mills theory and N, is the number of
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colours, which in this work is set to 2.
The anisotropy parameter is given by

and at tree-level it becomes

The main observables that we use are the average of the extra-dimensional plaquette, P
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the Polyakov loop in the temporal direction
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and similarly, with the appropriate changes, the Polyakov loop along the extra dimension, Polys.
Using the appropriate analysis, their susceptibilities and distributions are extracted.

3. Results

The phase diagram of the model described above was investigated focusing specifically on the
region where the Layer phase is believed to exist. A schematic phase diagram of the above model
from combining our results with those from previous work [6, 7, 8, 9], is shown in Fig. 1. The
regime of our interest is at Y < 1, where the Layer phase is believed to exist, i.e. in the shaded
region of Fig. 1. In [8], it was shown that a bulk phase transition is present up to 34 = 2.50 (blue
solid line in Fig.1) and as one moves towards larger values of 4, bigger volumes are required in
order to see this first order phase transition. Specifically for B4 = 2.50 at least 20 spatial/temporal
points were required to see this transition.

Farakos and Vrentzos claimed that the order of the phase transition changes to second for
B4 > 2.60, but the largest volume used to explore this was 16°, which is smaller than the minimum



Searching for a continuum 4D field theory arising from a 5D non-abelian gauge theory  Eliana Lambrou

5 . : . |
o
4 i -
Deconfined Phase
3 (5D Coulombic)
=5
2 - - -
Confined Phase -~~~
| | (Strong-coupling) |
- Layer
0 : - ! ‘Phase
0.5 1 1.5 2 2.5 3

By

Figure 1: A cartoon of the phase diagram of the five-dimensional model in the infinite volume limit. The
green solid line shows a first order transition between the strong-coupling and the Coulombic phases. In the
shaded region, where 4 > 2.60, it was previously claimed that the order of the phase transition changes to
second and the Layer phase can be defined.

size that is required according to Knechtli et al. [8]. Therefore, we decided to explore this further
to see if the second order phase transition is still present for larger volumes.

The procedure that we followed was to keep the value of B4 constant and vary S5 to find the
critical point. The choice of B4 was based on the previous work of [3] and was set to B4 = 2.60.
Understanding the importance of the extrapolation to the thermodynamic limit, we implemented
the model on larger volumes of 20* x 8 and 24* x 8 but we also took measurements for V = 16
to check the consistency of our results with [3]. Since the lattice spacing in the extra dimension is
much larger than the lattice spacing in the usual four dimensions, reducing the lattice points along
the extra dimension does not introduce any significant finite-size effect and it was checked that
the extra-dimensional Polyakov loop was unbroken, ensuring that the system is still in the infinite
volume limit. The configurations were obtained by applying a combination of Kennedy-Pendleton
Heat-Bath algorithm with overrelaxation steps and the above observables where measured for an
ensemble of 100,000 - 200,000 of these configurations. For each set of points, (S, B5), measure-
ments were taken starting from both cold (unity) and hot (random) configurations.

First, the critical point for our smallest volume V = 16> was found by applying reweight-
ing techniques to the susceptibility of the extra-dimensional plaquette and was estimated to be
Bsc = 0.8437(5), which matches the value in [3]. However, when we moved to V = 20* x 8 the
fluctuations of the extra-dimensional plaquette close to the critical point were large, signalling that
there might be a first order phase transition, so we took measurements for V = 24* x 8. For the
latter volume, there was a clear two-peak structure with a minor fluctuation between the two vacua,
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as it is shown in Fig. 2, which indicates a first order phase transition. For completeness, we also
implemented one point close to the critical one (5 = 0.844) for V = 32% x 8, where the extra-
dimensional plaquette shows a clear two-state signal with no fluctuation between the vacua. So we

conclude that the transition is of first order.
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Figure 2: The number distributions of the extra-dimensional plaquette starting from both oriented and
random configurations for the parameter point (2.60,0.8435) and V = 24* x 8. A two-peak structure is

apparent which indicates a first-order phase transition.

From the above results, it is clear that the bulk phase transition between the confined and
deconfined phase continues up to 4 = 2.60 with no indication that for larger values of B4 it will
change to a second order phase transition to give the possibility of defining a continuum four-
dimensional field theory. Although the change of the order of the phase transition to a second order
cannot be excluded, an extension of the investigation should be done very carefully, especially in

the choice of lattice volumes in order not to get misleading results.

4. Conclusions

This work shows the extension of the exploration of the transition to a layered phase in the five-
dimensional anisotropic SU(2) Yang-Mills model using Monte Carlo simulations. This is done
in the regime where the lattice spacing in the usual four dimensions is smaller than in the extra
dimension, i.e. the regime where ¥ < 1. This transition was previously claimed to be second
order for lattice couplings B4 > 2.60 and thus the five-dimensional theory could be dimensionally
reduced to a continuum four-dimensional theory; this implies that in the Layer phase a continuum
effective 4D theory could be defined. However, our lattice simulations give a clear indication of
a first order transition at 84 = 2.60, which implies that up to this value there is no evidence of
this dimensional reduction. We cannot exclude the possibility that the transition will change from
first to second order for higher values of B4, but the requirement to go to much larger lattices in
order to unambiguously determine the order of the transition makes the continuation of this search

numerically very demanding.
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