
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
1
1

Partially twisted boundary conditions for scalar
mesons

Akaki Rusetsky ∗

Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and
Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn, Germany
E-mail: rusetsky@hiskp.uni-bonn.de

Dimitri Agadjanov
Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie),
Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn, Germany and
St. Andrew the First-Called Georgian University of the Patriarchate of Georgia,
Chavchavadze Ave., 53a, 0162, Tbilisi, Georgia
E-mail: dagadjanov@hiskp.uni-bonn.de

Ulf-G. Meißner
Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie),
Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn, Germany and
Institute for Advanced Simulation (IAS-4), Institut für Kernphysik (IKP-3) and
Jülich Center for Hadron Physics, Forschungszentrum Jülich D-52425, Jülich, Germany
E-mail: meissner@hiskp.uni-bonn.de

The possibility of imposing partially twisted boundary conditions in the lattice study of the reso-

nance states is investigated by using the effective field theory (EFT) methods. In particular, it is

demonstrated that – in certain cases – it is possible to use partial twisting even in the presence of

the quark annihilation diagrams. This talk is mainly based on our recent work [1], which provides

substantially more details and discussion.
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1. Introduction

Recently, it has been argued that the use of twisted boundaryconditions [2–4] may prove useful
for the extraction of the parameters of the resonances from the lattice QCD data [5–7]. In particular,
this is the case when the resonances in the infinite volume arelocated close to the thresholds, so
that, in a finite volume, one encounters a difficulty in separating these two effects in the measured
spectrum. It has been explicitly demonstrated that, using twisted boundary conditions, it is possible
to move threshold away from the resonance pole position. As aresult, the accuracy of the extracted
pole position increases dramatically [6, 7].

It should be pointed out that, imposing twisted boundary conditions on the quark fields implies,
in general, calculating gauge configurations anew. For thisreason, the simulations with the so-
called “fully twisted” quarks are prohibitively expensive. A much cheaper solution that goes under
the name of “partial twisting,” uses the same gauge configurations but twisted valence quarks in
the propagators. It is clear that fully and partially twisted theories differ in a finite volume. Hence,
it is legitimate to ask, whether the spectrum of the partially-twisted theory can be still used for the
calculation of the physical observables.

There are the situations, when the use of the partially twisted boundary conditions can be
rigorously justified (see, e.g., Refs. [3, 4]). In particular, these are the situations where the so-
called annihilation diagrams of the type shown in Fig. 1 are absent. In this case, it can be proven
that the potential that describes interactions in the system of two hadrons is the same in the infinite
and in a finite volume, up to the exponentially suppressed terms. Consequently, the spectrum in
the partially twisted case can be analyzed by using the Lüscher equation [8] which is derived in the
fully twisted theory – the differences will be exponentially suppressed in a large volume.

One may easily see what goes different when the annihilationdiagrams like the one shown
in Fig. 1 are present. In the EFT language, the quark diagram shown in this figure corresponds
to the intermediate state of two fictitious mesons consisting from one valence quark and one sea
antiquark (orvice versa). The threshold of this diagram coincides with the elastic threshold –
consequently, the finite-volume effects in such diagrams are only power-law suppressed and can
not be neglected. On the other hand, including such intermediate states in the Lüscher equation
explicitly will necessarily lead to a different equation, since the boundary conditions imposed on the
fictitious mesons differ from the ones imposed on the usual ones (because the boundary conditions
on the valence and sea quarks differ). Consequently, one arrives at the conclusion that, in the
presence of the annihilation diagrams, the equivalence of partial and full twisting can not be proven,
so one either uses full twisting or gives it up.

We consider such a conclusion premature, for the following reason. As it can be seen from
the discussion above, the Lüscher equation will indeed haveto get modified in the presence of
annihilation diagrams. However, such a modification proceeds in a well-defined manner: only two-
particle intermediate states feel twisting, whereas the interaction potential between various hadron
pairs stays the same in the finite volume. So, the derivation of the modified Lüscher equation is a
straightforward task. A non-trivial part of the problem consists in answering the question, whether
the modified Lüscher equation enables one to extract information about the physical sector of the
theory (i.e., the sector with only valence quarks). If this is the case, the use of partial twisting can
be still justified, even in the presence of annihilation diagrams.
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M1

M2

Figure 1: An example of an annihilation diagram in meson-meson scattering. The full and dashed lines
denote valence and sea quarks, respectively. The intermediate state for this diagram consists of two mesons
M1 andM2 with one valence and one sea quark.

In this work, we concentrate on a particular example, namely, the scalar resonancea0(980)
with a full isospinI = 1 and provide a complete solution of the problem in question.From this
example it becomes crystal clear, how the method would work in a general case.

2. Symmetries of the hadronic potential

A straightforward way to derive Lüscher equation is to use EFT methods (see, e.g., Refs. [9,
10]). It should be stressed that, in our case, we speak oftwo effective theories, namely, of the par-
tially twisted Chiral Perturbation Theory (ChPT) which is eventually matched to the non-relativistic
EFT. The finite-volume spectrum of the latter theory is described by the Lüscher equation which
we are aimed at to derive.

In order to arrive at the partially twisted ChPT, a standard procedure can be used (here we
mainly follow Ref. [11]). The fermion sector of QCD is enlarged by introducing the so-called
valence, sea and ghost (commuting) quarks:

ψ̄(6D+m)ψ → ψ̄v(6D+mval)ψv+ ψ̄s(6D+msea)ψs+ ψ̄g(6D+mgh)ψg , (2.1)

wheremval, msea, mgh are valence, sea, ghost quark mass matrices. We take them allequal (unlike
the partially quenched case). However, theSU(3) symmetry is not assumed,mu = md 6= ms in all
sectors. Partially twisted boundary conditions correspond to imposing twisted boundary conditions
on the valence and ghost quarks and periodic boundary conditions on the sea quarks.

In the chiral limit, the infinite-volume theory is invariantunder the graded symmetry group
SU(2N|N)L ×SU(2N|N)R×U(1)V , whereN = 3 is the number of light flavors. The low-energy
effective Lagrangian, corresponding to the case of partially twisted boundary conditions, contains
the matrixU = exp{i

√
2Φ/F} of the pseudo-Goldstone fieldsΦ, which transforms under this

group as

U → LUR† , L,R∈ SU(2N|N) . (2.2)

The Hermitian matrixΦ has the following representation

Φ =





Mvv M†
sv M†

gv

Msv Mss M†
gs

Mgv Mgs Mgg



 . (2.3)

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
1
1

Partially twisted boundary conditions for scalar mesons Akaki Rusetsky

Index Channel Quark content

1 |π+
vvηvv〉 − 1√

6
|(uvd̄v)(uvūv+dvd̄v−2svs̄v)〉

2 |π+
vvη ′

vv〉 − 1√
3
|(uvd̄v)(uvūv+dvd̄v+svs̄v)〉

3 |π+
vvηss〉 − 1√

6
|(uvd̄v)(usūs+dsd̄s−2sss̄s)〉

4 |π+
vvη ′

ss〉 − 1√
3
|(uvd̄v)(usūs+dsd̄s+sss̄s)〉

5 |π+
vvηgg〉 − 1√

6
|(uvd̄v)(ugūg+dgd̄g−2sgs̄g)〉

6 |π+
vvη ′

gg〉 − 1√
3
|(uvd̄v)(ugūg+dgd̄g+sgs̄g)〉

7 |K+
vvK̄

0
vv〉 |(uvs̄v)(svd̄v)〉

8 |K+
vsK̄

0
vs〉 |(uvs̄s)(ssd̄v)〉

9 |K+
vgK̄0

vg〉 |(uvs̄g)(sgd̄v)〉
10 |π+

vsπ0
vs〉 1

2(−(uvd̄s)(usūv−dsd̄v)+ (uvūs−dvd̄s)(usd̄v)〉
11 |π+

vgπ0
vg〉 1

2(−(uvd̄g)(ugūv−dgd̄v)+ (uvūg−dvd̄g)(ugd̄v)〉

Table 1: Scattering channels for the case ofI = I3 = 1.

Here, each of the entries is itself aN×N matrix in flavor space, containing meson fields built up
from certain quark species (e.g., from valence quark and valence antiquark, from sea quark and
ghost antiquark, and so on). The fieldsMgv andMgs are anti-commuting pseudoscalar fields (ghost
mesons). Further, the matrixΦ obeys the condition strΦ = tr(Mvv+Mss−Mgg) = 0, where “str”
stands for the supertrace.

The effective chiral Lagrangian takes the form

L =
F2

0

4
str(∂µU∂ µU†)− F2

0

4
str(χU +Uχ†)+higher-order terms, (2.4)

whereχ = 2mB0 is proportional to the quark mass matrix.
In the infinite volume, the above theory is completely equivalent to ordinary Chiral Perturba-

tion Theory (ChPT), since the masses of the quarks of all species are set equal. In a finite volume,
the difference arises due to the different boundary conditions, set on the different meson fields.
These boundary conditions are uniquely determined by the boundary conditions imposed on the
constituents.

Consider now the S-wave scattering of two pseudoscalar mesons in the channel with the to-
tal isospinI = 1. This is necessarily a coupled-channel problem, with the two-particle channels
containing mesons from all sectors. These channels forI = I3 = 1 are listed in Table 1.

At the next step, the partially quenched ChPT is matched to the non-relativistic EFTwith the
same hadron spectrum. The two-particle scattering amplitude in the non-relativistic EFT obeys the
coupled-channel Lippmann-Schwinger (LS) equation

Ti j =Vi j +
11

∑
m,n=1

VimGmnTn j , i, j = 1, · · · ,11. (2.5)

By using dimensional regularization, the above equation becomes analgebraic equation, where
both theTi j and the potentialVi j are evaluatedon shell(the potentialVi j coincides with the mul-
tichannelK-matrix in this formalism). The quantityGi j stands for the two-particle loops in the
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intermediate state. This quantity is not diagonal due to themixing of the neutral states, so, in order
to calculate this quantity, one has first to diagonalize it the the basis of physical neutral mesons
and then use the prescriptions of the non-relativistic EFT for calculating a loop. The details can be
found in Ref. [1].

The entries ofTi j andVi j , corresponding to the scattering fully in the valence sector, are termed
as physical. The quark diagrams, describing the amplitudes in this sector, are the same as in
ordinary QCD. However,Ti j andVi j contain unphysical entries as well, describing the transitions
between valence/sea/ghost sectors. The quark diagrams describing these transitions are, in general,
different (e.g., containing only disconnected contributions). So, the question arises, whether one is
able to relate the finite-volume spectrum of the theory to thephysical matrix elements only.

The key property which allows one to do so is the symmetry ofTi j andVi j , which stems from
theSU(2N|N)L×SU(2N|N)R×U(1)V graded symmetry of the original theory. In particular, it can
be shown that the matrix elements of these matrices obey certain linear relations which reduce the
number of the independent entries. As a nice check, it can be verified that, due to these constraints,
the relation between theT- andK-matrix elements in the infinite volume turns out to be the same
as in ordinary ChPT, without sea and ghost quarks. In fact, inthe infinite volume these two theories
should be exactly equivalent.

3. Derivation of the partially twisted Lüscher equation

In a finite volume, only the matrixG containing two-meson loops changesG→ GL, where the
matrix elements ofGL are linear combinations of the Lüscher zeta-functions. Thepotential remains
the same. The spectrum is determined from the secular equation

det(1−VGL) = 0. (3.1)

Various scenarios of the partial twisting lead to the different modifications ofG and hence to the
different versions of the Lüscher equation. Below, we shallconsider two scenarios. The general
pattern will be clear from these examples.

Scenario 1:

We impose periodic boundary conditions on theu-,d-quarks and twisted boundary conditions
on thes-quark:

u(x+nL) = u(x) , d(x+nL) = d(x) , s(x+nL) = eiθns(x) . (3.2)

These boundary conditions translate into the boundary conditions for the meson states. Only the
boundary conditions for the kaons change:

K±(x+nL) = e∓iθnK±(x) , K0(x+nL) = e−iθnK0(x) , K̄0(x+nL) = eiθnK̄0(x) . (3.3)

This means thatK andK̄ mesonscontaining valence and ghost s-quarksget additional 3-momenta
∓θ/L. The system stays in the CM frame. The secular equation takesthe form

(1−V77KL −V11EL +(V77V11−V2
17)KLEL)FL(θ) = 0, (3.4)
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whereKL andEL denote theKK̄ andπη loops in a finite volumein the absence of twisting

KL,EL =
1

4π3/2P0L
Z00(1;q2) , q=

pL
2π

, (3.5)

p is the magnitude of the relative three-momentum of a pair in the CM frame (KK̄ or πη pair,
respectively), andP0 is the total energy of a pair. The quantityFL(θ) denotes a factor that depends
on the unphysical entries of the matrixV.

As seen, owing to the symmetries of the matrixV, the determinant in the secular equation
was split, and a piece containing only physical amplitudes,has emerged. The resulting equation is,
however, not very useful because it coincides with the equation with no twisting.

As seen, the spectrum of the partially twisted equation contains more states than the fully
twisted one (these are the solutions of the equationFL(θ) = 0). Physically, these solutions are not
interesting because the physical and non-physical matrix elements are intertwined here. It could be
shown that, choosing particular source/sink operators, which do not have an overlap with some of
the states, one may project out the physical part of the spectrum.

Scenario 2:

Here we consider twisting of theu-quark, leaving thed- ands-quarks to obey periodic bound-
ary conditions. What changes here is the free Green functionin a finite volume.

K,E → Kθ
L ,E

θ
L =

1

4π3/2
√

sγL
Zd

00(1;(q∗)2) , q∗ =
p∗L
2π

, p∗ =
λ 1/2(s,m2

1,m
2
2)

2
√

s
. (3.6)

whered = PL/2π = θ/2π, s= P2
0 −P2, γ = P0/

√
s, the quantityλ (x,y,z) is Mandelstam triangle

function andZd
00(1;(q∗)2) denotes the Lüscher zeta-function in the moving frame [12],see also

Refs. [13, 14]:

Zd
00(1;(q∗)2) =

1√
4π ∑

r∈Pd

1
r2− (q∗)2 ,

Pd = {r = R
3 | r‖ = γ−1(n‖−µ1|d|), r⊥ = n⊥, n ∈ Z

3} , (3.7)

whereµ1 =
(

1− (m2
1−m2

2)/s
)

/2.
The secular equation in a finite volume takes the form

(1−V77K
θ
L −V11E

θ
L +(V77V11−V2

17)K
θ
L Eθ

L )F
′
L(θ) = 0, (3.8)

whereF ′
L(θ) is another factor, depending on the unphysical entries. It is seen that the spectra in

case of the partial and full twisting coincide.

4. Summary

Using the non-relativistic EFT technique in a finite volume,we have derived the Lüscher
equation for the partially twisted boundary conditions forcoupled-channelπη −KK̄ scattering.
Our final result is remarkably simple. If in the channel withI = I3 = 1 the light quarks are subject
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to twisting, the partially twisted Lüscher equation is equivalent to the fully twisted one, despite
the presence of annihilation diagrams. If, on the contrary,partial twisting of the strange quark is
performed, the physically interesting part of the spectrumis not affected. Other scenarios are also
possible and can be investigated by using the same methods.

We think that this result would be interesting for the lattice practitioners studying the properties
of scalar mesons. We have shown that, instead of carrying outsimulations at different volumes, as
required in the Lüscher approach, one may perform relatively cheaper partially twisted simulations.
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