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1. Introduction

Recently, it has been argued that the use of twisted bourdaditions [2—4] may prove useful
for the extraction of the parameters of the resonances fnerfattice QCD data [5—7]. In particular,
this is the case when the resonances in the infinite voluméeaged close to the thresholds, so
that, in a finite volume, one encounters a difficulty in sepagathese two effects in the measured
spectrum. It has been explicitly demonstrated that, usingfed boundary conditions, it is possible
to move threshold away from the resonance pole position. rasut, the accuracy of the extracted
pole position increases dramatically [6, 7].

It should be pointed out that, imposing twisted boundaryditms on the quark fields implies,
in general, calculating gauge configurations anew. Forrégason, the simulations with the so-
called “fully twisted” quarks are prohibitively expensiv& much cheaper solution that goes under
the name of “partial twisting,” uses the same gauge configunrs but twisted valence quarks in
the propagators. It is clear that fully and partially twistbeories differ in a finite volume. Hence,
it is legitimate to ask, whether the spectrum of the paytiddlisted theory can be still used for the
calculation of the physical observables.

There are the situations, when the use of the partially édistoundary conditions can be
rigorously justified (see, e.g., Refs. [3,4]). In particultnese are the situations where the so-
called annihilation diagrams of the type shown in Fig. 1 drgeat. In this case, it can be proven
that the potential that describes interactions in the systietwo hadrons is the same in the infinite
and in a finite volume, up to the exponentially suppressetdgerConsequently, the spectrum in
the partially twisted case can be analyzed by using the laisduation [8] which is derived in the
fully twisted theory — the differences will be exponentjadluppressed in a large volume.

One may easily see what goes different when the annihilatiagrams like the one shown
in Fig. 1 are present. In the EFT language, the quark diagfaowrs in this figure corresponds
to the intermediate state of two fictitious mesons congjshiom one valence quark and one sea
antiquark (orvice versy. The threshold of this diagram coincides with the eladtieshold —
consequently, the finite-volume effects in such diagramsoaty power-law suppressed and can
not be neglected. On the other hand, including such inteatedtates in the Lischer equation
explicitly will necessarily lead to a different equatiomee the boundary conditions imposed on the
fictitious mesons differ from the ones imposed on the usue$ ¢bhecause the boundary conditions
on the valence and sea quarks differ). Consequently, onesrat the conclusion that, in the
presence of the annihilation diagrams, the equivalencarigband full twisting can not be proven,
so one either uses full twisting or gives it up.

We consider such a conclusion premature, for the followeeson. As it can be seen from
the discussion above, the Lischer equation will indeed tanget modified in the presence of
annihilation diagrams. However, such a modification prdsee a well-defined manner: only two-
particle intermediate states feel twisting, whereas tteraction potential between various hadron
pairs stays the same in the finite volume. So, the derivatidheomodified Llscher equation is a
straightforward task. A non-trivial part of the problem ewts in answering the question, whether
the modified LUscher equation enables one to extract infdmmabout the physical sector of the
theory (i.e., the sector with only valence quarks). If tlsishe case, the use of partial twisting can
be still justified, even in the presence of annihilation diegs.



Partially twisted boundary conditions for scalar mesons Akaki Rusetsky

/\ M,
Blwid

U]\/f 1

Figure 1: An example of an annihilation diagram in meson-meson sadte The full and dashed lines
denote valence and sea quarks, respectively. The inteateestate for this diagram consists of two mesons
M; andM; with one valence and one sea quark.

In this work, we concentrate on a particular example, nantbely scalar resonan@g(980)
with a full isospinl = 1 and provide a complete solution of the problem in questieram this
example it becomes crystal clear, how the method would woedeneral case.

2. Symmetries of the hadronic potential

A straightforward way to derive Lischer equation is to usd BEfethods (see, e.g., Refs. [9,
10]). It should be stressed that, in our case, we speakméffective theories, namely, of the par-
tially twisted Chiral Perturbation Theory (ChPT) which isatually matched to the non-relativistic
EFT. The finite-volume spectrum of the latter theory is diéstt by the Lischer equation which
we are aimed at to derive.

In order to arrive at the partially twisted ChPT, a standammtedure can be used (here we
mainly follow Ref. [11]). The fermion sector of QCD is enlad) by introducing the so-called
valence, sea and ghost (commuting) quarks:

Ll_l(lD+m)Lﬂ — ’ﬁv(D‘i‘ Myal) Yy + ’ﬁs(D"‘msea)Lps‘f‘ Lﬁg(D"‘%h)Wg? (2.1)

wherem,,;, Mi.a, My, are valence, sea, ghost quark mass matrices. We take thequall (unlike
the partially quenched case). However, 8i¢(3) symmetry is not assumedy, = my # ms in all
sectors. Partially twisted boundary conditions correspgorimposing twisted boundary conditions
on the valence and ghost quarks and periodic boundary eomslion the sea quarks.

In the chiral limit, the infinite-volume theory is invariaohder the graded symmetry group
SU(2N|N)L x SU(2N|N)r x U (1)y, whereN = 3 is the number of light flavors. The low-energy
effective Lagrangian, corresponding to the case of partialisted boundary conditions, contains
the matrixU = exp{iv/2®/F} of the pseudo-Goldstone fields, which transforms under this
group as

U—LUR", L ,ReSU(2N|N). (2.2)

The Hermitian matrix® has the following representation

My, ML, M,
O=| My My ML |. (2.3)
MgV Mgs Mgg
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Index Channel Quark content

L[ fr<uv d,) (G, 1 dd, —25,5))

2 |Imni) | =25 1w (ui +dvd, +8.8))

3 |Ihnss) |~ g (k) (usls + dsds — 25.5)))

4 |Imings) [— 75 1 (ud) (sl +dsds + S5))

S TG Neg) %[(u\,dl)(u Ug+dgd§_23gs_g)>

6 |Inge) |~ (W) (Ugl + el + 55))

7 KK | [(ws)(svdy))

8 [IKEKY) [[(w&)(sdy))

9 KK (W) (sh)) o
10 ||sl) | 3(—(uyds)(usty — ) (uyUs —dyds) (usdy))
11 | r,) | 3(—(uydg) (ugly — dgd,) + (U, Ug — dydg) (ugdh,))

Table 1: Scattering channels for the casd ef I3 = 1.

Here, each of the entries is itselNax N matrix in flavor space, containing meson fields built up
from certain quark species (e.g., from valence quark aneineal antiquark, from sea quark and
ghost antiquark, and so on). The fieMs, andM, are anti-commuting pseudoscalar fields (ghost
mesons). Further, the matriik obeys the condition st = tr (M,, + M — Mgg) = 0, where “str”
stands for the supertrace.

The effective chiral Lagrangian takes the form

2 2
L= %Ostr(a,lu oHuUT) — F?o str(xU +U x™1) + higher-order terms, (2.4)

wherex = 2mB; is proportional to the quark mass matrix.

In the infinite volume, the above theory is completely egleinaito ordinary Chiral Perturba-
tion Theory (ChPT), since the masses of the quarks of allispece set equal. In a finite volume,
the difference arises due to the different boundary camtiti set on the different meson fields.
These boundary conditions are uniquely determined by tlhwdery conditions imposed on the
constituents.

Consider now the S-wave scattering of two pseudoscalar meaaahe channel with the to-
tal isospinl = 1. This is necessarily a coupled-channel problem, with We garticle channels
containing mesons from all sectors. These channels#$ol; = 1 are listed in Table 1.

At the next step, the partially quenched ChPT is matchedamtm-relativistic EFTwith the
same hadron spectrunthe two-particle scattering amplitude in the non-relatic EFT obeys the
coupled-channel Lippmann-Schwinger (LS) equation

11
Tij =Vij + z VimGmnThj i,j=1,---,11. (2.5)
mn=1
By using dimensional regularization, the above equaticcobres aralgebraic equation, where
both theT;; and the potentialj; are evaluatedn shell(the potentiaV;; coincides with the mul-
tichannelK-matrix in this formalism). The quantit@;; stands for the two-particle loops in the
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intermediate state. This quantity is not diagonal due tarihéng of the neutral states, so, in order
to calculate this quantity, one has first to diagonalize ét tiine basis of physical neutral mesons
and then use the prescriptions of the non-relativistic EdfIcélculating a loop. The details can be
found in Ref. [1].

The entries off;; andV;;, corresponding to the scattering fully in the valence seete termed
as physical The quark diagrams, describing the amplitudes in thisogseetre the same as in
ordinary QCD. HoweverT;; andV;; contain unphysical entries as well, describing the traorsst
between valence/seal/ghost sectors. The quark diagrarribiles these transitions are, in general,
different (e.g., containing only disconnected contribng). So, the question arises, whether one is
able to relate the finite-volume spectrum of the theory tgatigsical matrix elements only.

The key property which allows one to do so is the symmetry;joandVj;, which stems from
the SU(2N|N)_ x SU(2N|N)r x U (1)y graded symmetry of the original theory. In particular, ihca
be shown that the matrix elements of these matrices obegicdiriear relations which reduce the
number of the independent entries. As a nice check, it carbféed that, due to these constraints,
the relation between the- andK-matrix elements in the infinite volume turns out to be the sam
as in ordinary ChPT, without sea and ghost quarks. In fathdrinfinite volume these two theories
should be exactly equivalent.

3. Derivation of the partially twisted Llscher equation

In a finite volume, only the matri& containing two-meson loops changes— G, , where the
matrix elements o6, are linear combinations of the LUscher zeta-functions. pdtential remains
the same. The spectrum is determined from the secular equati

det(1-VG) = 0. (3.1)

Various scenarios of the partial twisting lead to the défgrmodifications of5 and hence to the
different versions of the Luscher equation. Below, we sbalisider two scenarios. The general
pattern will be clear from these examples.

Scenario 1;

We impose periodic boundary conditions on tha@l-quarks and twisted boundary conditions
on thes-quark:

u(x+nL)=u(x), d(x+nL)=d(x), s(x+nL)=esx). (3.2)

These boundary conditions translate into the boundaryitiond for the meson states. Only the
boundary conditions for the kaons change:

KE(x+nL) = e™"K*(x), KOx+nL)=e9"K%x), K°(x+nL)=€%K(x). (3.3)

This means that andK mesonsontaining valence and ghost s-quadet additional 3-momenta
F6/L. The system stays in the CM frame. The secular equation takeerm

(1— V7KL —Va1E| + (VoM — VE)KLEL)FL(8) =0, (3.4)
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whereK, andE, denote th&KK and7m loops in a finite volumén the absence of twisting

L
Zoo(Lig?), q=1= (3.5)

K .E = =
L, L 27_[7

1
4P RL
p is the magnitude of the relative three-momentum of a paihe&M frame KK or 7 pair,
respectively), and® is the total energy of a pair. The quantfy(8) denotes a factor that depends
on the unphysical entries of the matkix

As seen, owing to the symmetries of the mawixthe determinant in the secular equation
was split, and a piece containing only physical amplituties,emerged. The resulting equation is,
however, not very useful because it coincides with the eguatith no twisting

As seen, the spectrum of the partially twisted equationanatmore states than the fully
twisted one (these are the solutions of the equddi®) = 0). Physically, these solutions are not
interesting because the physical and non-physical md&irents are intertwined here. It could be
shown that, choosing particular source/sink operatorghwio not have an overlap with some of
the states, one may project out the physical part of the mpact

Scenario 2:

Here we consider twisting of thequark, leaving th&- ands-quarks to obey periodic bound-
ary conditions. What changes here is the free Green funttiarfinite volume.

1 pL L AYA(smEmh)
Ar3/2, /syl o P T 2\/s '

whered = PL/2rm= 0/2m, s= P2 — P2, y = Py//S, the quantityA (x,y, ) is Mandelstam triangle
function andzd,(1;(q*)?) denotes the Liischer zeta-function in the moving frame [48% also
Refs. [13, 14]:

K,E— K& Ef = Zo(L(g)?), g = (3.6)

d R \2) 1 1
ZOO(l’(q ) ) - \/ﬁr;d rZ_(q*)Za
Py ={r=R%rj=y (ny—ld]), r. =n;, neZ%, (3.7)

wherep = (1— (mf —mg)/s) /2.

The secular equation in a finite volume takes the form
(1— V77K =V EC + (Vo1 — VE)KPEP)F/ (8) =0, (3.8)

whereF/(0) is another factor, depending on the unphysical entriess deen that the spectra in
case of the partial and full twisting coincide.

4. Summary

Using the non-relativistic EFT technique in a finite volunvge have derived the Luscher
equation for the partially twisted boundary conditions éoupled-channeft — KK scattering.
Our final result is remarkably simple. If in the channel wita 13 = 1 the light quarks are subject
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to twisting, the partially twisted Lischer equation is eglgnt to the fully twisted one, despite
the presence of annihilation diagrams. If, on the contnaaytial twisting of the strange quark is
performed, the physically interesting part of the spectisimot affected. Other scenarios are also
possible and can be investigated by using the same methods.

We think that this result would be interesting for the lataractitioners studying the properties
of scalar mesons. We have shown that, instead of carryingilmutations at different volumes, as
required in the Lischer approach, one may perform relgtslebaper partially twisted simulations.
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