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1. Introduction

One of the most widely used fermion discretizations is that of Wilson fermions. The increase
of computational power and the improvement of algorithms has allowed for simulations in the
deep chiral regime. To extrapolate the lattice data to the continuum limit it is crucial to understand
the lattice discretization effects as well as the interplay between finite lattice spacing and chiral
symmetry breaking. This problem was attacked in numerous ways. There has been a large ongoing
effort to determine the Low Energy Constants (LECs) of Wilson chiral pertubation theory [1] both
from an analytical point of view [2, 3, 4, 5, 6, 7, 8] as well as numerically [9, 10, 11, 12, 13, 14, 15]
in order to elucidate the new phases that one encounters at finite values of the lattice spacing. Those
discretization artifacts have also been studied for QCD-like theories like two-color QCD and QCD
with adjoint fermions [16].

In our analysis we incorporate the effect of the three LECs at order a2. As a starting point
we employ Wilson random matrix theory (RMT) for the non-Hermitian Wilson Dirac operator
originally proposed in [2]. We refer the reader to [17] for a review of the recent developments of
RMT for the Wilson Dirac operator. This proceeding is a summary of the main results of Ref. [8].
Readers who are interested in the derivation of those results are referred to this work and related
mathematical developments published in [5].

The contents of this proceeding is as follows. In Sec. 2 we briefly introduce the RMT and
describe the effect of W6 and W7 on the spectrum of the Wilson Dirac operator by switching off W8.
In Sec. 3 we summarize the effects of all three LECs on the level densities and discuss the limits
of large and small lattice spacing. Thereby we provide comparisons of the analytical results with
Monte-Carlo simulations of Wilson RMT. Moreover we propose some observables accessible by
lattice simulations to extract the LECs.

2. The effects of W6 and W7

The introduction of the Wilson term in the lattice discretization of the Dirac operator explicitly
breaks chiral symmetry. As a result the low energy effective theory for QCD will be affected and
consequently new terms have to be incorporated in order to describe this effect. Denoting the quark
masses by m, the spacetime volume by V and the chiral condensate by Σ, the effective partition
function for Nf fermionic flavors reads

Zν
Nf
(m) =

∫
U(Nf)

dµ(U)exp
[

ΣV
2

trm(U +U−1)−a2VW6tr 2(U +U−1)

]
×exp

[
−a2VW7tr 2(U−U−1)−a2VW8tr(U2 +U−2)

]
detνU. (2.1)

Hereby we adopt the conventions of [2] for the LECs W6/7/8. The partition function (2.1) is ob-
tained in the ε-regime of chiral perturbation theory (chPT) which is the limit of large volume,
V → ∞, where m̂ = mV Σ, â2

6/7 = −a2VW6/7 and â2
8 = a2VW8 are fixed1. In this limit there is an

exact equivalence between the partition functions of chiral perturbation theory and chiral RMT

1For â6/7/8 we employ the sign convention of [8].
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[18, 19, 20]. The corresponding RMT is

DW =

(
aA W
−W † aB

)
+m611+λ7γ5, (2.2)

where the random matrix W generates the a→ 0 limit of Eq. (2.1), the Hermitian matrices A and
B generate the term proportional to W8 and the two scalar random variables m6 and λ7 generate the
terms proportional to W6 and W7, respectively. All random variables are Gaussian distributed. In
the microscopic limit, where the matrix dimension n→ ∞ while fixing m̂6 = 2nm6, λ̂7 = 2nλ7 and
â2

8 = na2/2 the random matrix partition function reduces to the chiral partition function (2.1).
First, let us focus on the effect of W6 and W7 and set W8 = 0. In this case the massive Dirac

operator reads

DW = DW |a=0 +(m+m6)11+λ7γ5, (2.3)

with eigenvalues given by

z± = m+m6± ı
√

λ 2
W −λ 2

7 , (2.4)

where we denote an eigenvalue of the continuum Dirac operator DW |a=0 by ıλW . In Fig. 1 the
different effects of W6/7 are shown schematically.
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Figure 1: Schematic plots of the effects of W6 (left plot) and of W7 (right plot) on the microscopic spectrum.
The former zero modes (green crosses) are broadened by a Gaussian while the complex conjugate pairs (red
crosses) are broadened parallel to the real axis by W6 and are pushed into the real axis by W7.

The LEC W6 broadens the microscopic spectrum parallel to the real axis by a Gaussian with a
width proportional to â6, while the shape of the spectrum projected to the real axis is not changed
at all. The reason is the additive nature of m̂6 to the eigenvalues (2.4) resulting in a convolution.
The effect of W7 is more drastic since the purely imaginary eigenvalues invade the real axis through
the origin. Only the former zero modes are broadened by a Gaussian with width proportional to â7.

3. The eigenvalue densities and their dependence on W6/7/8

Due to γ5-Hermiticity the eigenvalues of the Wilson Dirac operator come in complex conju-
gate pairs or are real. A Dirac operator with fixed index ν has ν generic real eigenvalues which
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correspond to the zero modes in the continuum limit. In addition, other real modes resulting from
complex conjugate pairs entering the real axis pairwise. Moreover, all real modes have non-zero
chirality while the chirality of the complex modes vanishes. Thus, one can define three different
eigenvalue densities, namely the one of the complex eigenvalues, ρc, and the one of all real modes,
ρreal = ρright +ρleft, splitting into the density of the right handed real modes (〈ψ|γ5|ψ〉> 0), ρright,
and the one of the left handed real modes (〈ψ|γ5|ψ〉 < 0), ρleft. Another important distribution is
the distribution of the chirality over the real eigenvalues [3]

ρ
ν
χ (λ̂ )≡∑λ̂k∈R

δ (λ̂ − λ̂k)sign〈k|γ5|k〉, (3.1)

which is equal to the imaginary part of the resolvent

ρ
ν
χ (λ̂ ) = lim

V→∞

1
π

Im

[
Gν(λ̂ )≡

〈
tr

1

V ΣDW + λ̂ 11− ıεγ5

〉]
. (3.2)

With the help of this distribution one can define the density of additional real modes ρadd = ρreal +

ρχ . The splitting of the level density of real modes into ρadd and ρχ has proven quite convenient
[6, 8] as will be seen in the ensuing discussion. This discussion summarizes the extensive analytical
study performed in [8].
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Figure 2: Log-log plots of the additional real modes versus â8 for ν = 0 (left plot) and ν = 2 (right plot).
The analytical results (solid curves) are compared to Monte-Carlo simulations of RMT (symbols). Notice
that a non-zero value of â7 yields a saturation at small â8.

First we discuss the additional real modes. The average number of additional real modes,

Nadd =
∫

∞

−∞

ρadd(x̂)dx̂, (3.3)

has shown to be a powerful quantity for measuring the strength of the lattice artifacts. Since we
integrate over the real axis Nadd is independent of W6. At small lattice spacing â7/8 ≈ 0.1 the
average number of additional real modes behaves as â2ν+2 while it scales linearly with â and
becomes independent of ν in the limit of large lattice spacing, see Fig. 2. Thus, at small lattice
spacing almost all additional real modes come from the sector with index ν = 0 given by

Nν=0
add

â�1
= 2Va2(W8−2W7). (3.4)
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The distribution ρadd lives on the scale â at small lattice spacing and on the scale â2 at large lattice
spacing. The latter limit is close to the mean field limit where the support of the real part of the
eigenvalues scales with â2.
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Figure 3: Analytical results for the projected level density of complex eigenvalues onto the imaginary axis,
ρcp, (left) and for the distribution of the chirality over the real modes, ρχ , (right) compared to Monte-Carlo
simulations of Wilson RMT for ν = 1. Notice that both distributions are symmetric around the origin in the
quenched theory and we plotted only the positive imaginary and real axis, respectively. The black curve in
the left plot is the continuum result and shows good agreement with ρcp for small lattice spacing while the
deviation is quite substantial for large lattice spacing.

The behavior of the projected density of complex eigenvalues,

ρcp(ŷ) =
∫

∞

−∞

ρc(x̂+ ıŷ)dx̂, (3.5)

when varying W7 and W8 can be seen in Fig. 3. Also this quantity is W6 independent since the
integration cancels the convolution with the random variable m̂6 and thus increases the statistics
of the numerical simulation. The LEC W8 smoothens the distribution such that the oscillations
completely disappear when increasing this LEC. In contrast to this effect, W7 dampens the height
of ρcp near the real axis since the complex eigenvalue pairs are pushed into the real axis while
the oscillations seem to be more persistent with regard to this LEC. Luckily the distribution ρcp

smoothly converges to the continuum result in the limit of small lattice spacing and gives a hint
that it is still a good quantity for extracting the chiral condensate via the Banks-Casher relation,

∆
â�1
=

π

ΣV
, (3.6)

where ∆ is the average level spacing of the imaginary part of the eigenvalues several eigenvalue
spacings from the origin. Furthermore, the section of ρc parallel to the real axis is a Gaussian of
width

σ2

∆2
â�1
=

4
π2 a2V (W8−2W6) (3.7)

at small lattice spacing and becomes box-shaped on the scale â2
8 = a2VW8 in the limit of large

lattice spacing as well as in the mean field limit.
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Finally, we consider the distribution of the chirality over the real eigenvalues, ρχ . This distri-
bution is always normalized to the index of the Dirac operator, i.e.

∫
ρχ(x̂)dx̂ = ν . At small lattice

spacing the effects of W6 and W7 are almost the same and yield a Gaussian broadening on the scale
â. In particular the variance of this distribution at fixed index ν takes a simple form, i.e.

〈x2〉ρχ

∆2
â�1
=

8
π2Va2(νW8−W6−W7), ν > 0, (3.8)

which is convenient for measuring the LECs. Moreover ρχ dominates the level density of the real
eigenvalues at small lattice spacing, i.e. ρχ≈ρreal (for â� 1), since its height is of order â−1 in
contrast to the height of ρadd which is of order â2ν+1. This behavior is reversed in the limit of large
lattice spacing. Then the height of ρχ is of order â−2 with support of order â2 while the height of
ρadd is of order â−1. Hence one has ρadd = ρreal +ρχ≈ρreal (for â� 1).

4. Conclusions

By utilizing powerful RMT techniques, see [5, 6, 8], we analytically calculated the spectral
densities of the real and complex eigenvalues of the non-Hermitian Wilson Dirac operator DW and
summarized the most important results here. All the results were presented for the quenched theory
but will be generalized to dynamical flavors in forthcoming publications.

We studied the explicit effects of all three LECs on the spectrum of the Wilson Dirac opera-
tor. Thereby we derived simple relations between the LECs, Σ and W6/7/8, and some measurable
quantities like the average level spacing of the projected eigenvalues onto the imaginary axis and
the average number of additional real modes, see Eqs. (3.4) and (3.6-3.8). Those relations apply
at small lattice spacing |a2VW6/7/8| ≤ 0.1. In this regime these quantities may serve for fixing
the LECs in lattice simulations. In particular the linear relations between Nν=0

add , σ and 〈x2〉ρχ
are

linearly dependent requiring the consistency relation

〈x2〉ν=1
ρχ

∆2 =
σ2

∆2 +
2

π2 Nν=0
add (4.1)

valid in the limit of small a2VW6/7/8. Such consistency relations as well as the relations (3.4)
and (3.6-3.8) will certainly improve the accuracy of the LECs fitted in [12, 14].

Moreover we also considered the limit of large lattice spacing which is closely related to the
mean field limit. The real part of the complex eigenvalues of DW as well as the real eigenvalues
themselves have a support in the interval [−8a2VW8,8a2VW8] agreeing with the discussion about
the complex eigenvalues in [7]. Although the impact of W6 and W7 on the density of the complex
eigenvalues is negligible in the mean field limit, they have a strong impact on the distribution
of the real eigenvalues. In particular, in the mean field limit of the quenched theory, a non-zero
W7 generates a square root singularity at the boundary of the support of ρadd while the density is
uniform for W7 = 0. Nevertheless we expect that the phase diagram of the quenched as well as the
unquenched theory will not really change by this effect which will be checked in a forthcoming
publication.
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