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We have performed the first numerical study of minimally doubled fermions of the Karsten-
Wilczek class in the quenched approximation. This requires fixing the counterterms, which arise
due to hypercubic symmetry breaking induced by the Karsten-Wilczek term. Non-perturbative
renormalisation criteria are formulated after a detailed study of the parameter dependence of
mesonic observables. Minimisation of the mass anisotropy of the pseudoscalar ground state fixes
non-perturbative renormalisation conditions for the counterterm coefficients. These anisotropies
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of the pseudoscalar ground state is studied with the tuned Karsten-Wilczek action for multiple
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logarithms is studied under the tentative assumption of Goldstone Boson-like behaviour.
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1. Introduction

For nearly 25 years of research on QCD, reconciliation of chiral symmetry and the lattice reg-
ularisation was considered a formidable problem. The Nielsen-Ninomiya no-go theorem prohibits
local definitions of single chiral modes at finite cutoff, which reproduce the Dirac operator in the
continuum limit. Minimally doubled fermions comply with the no-go theorem by having two chiral
modes, which are detached in the Brillouin zone, but still degenerate in the continuum limit. Their
displacement defines an explicit violation of hypercubic symmetry, which entails counterterms [1]
with the same reduced symmetry.

Karsten-Wilczek fermions [2] are a particular class of minimally doubled fermions with two
residual zero modes from the original naïve fermion action. The Wilczek parameter ζ , which must
satisfy |ζ |> 1/2, is by default fixed to 1. The full action [1] reads

SKW
f ,α = ∑

x
∑
µ

1+d(g2
0)δµα

2a

(
ψxγµUµ(x)ψx+µ̂ −ψx+µ̂ γµU†

µ(x− µ̂)ψx
)
+
(
ψxm0ψx

)
− ∑

µ 6=α

i ζ

2a

(
ψxγαUµ(x)ψx+µ̂ +ψx+µ̂ γαU†

µ(x− µ̂)ψx
)
+
(
ψx

(
i 3ζ+c(g2

0)
a γα

)
ψx
)
, (1.1)

SKW
g,α = β ∑

x
∑

µ<ν

(
1− 1

Nc
ReTrPµν(x)

)
(1+dP(g2

0)δµα), (1.2)

which includes three counterterms. The zero modes are aligned at kα = 0 and kα = π/a on the
xα -axis, which is commonly chosen as xα = x0. The spinor field ψ(x) simultaneously contains two
tastes with degenerate continuum limit, which are treated as the light quarks. The Karsten-Wilzek
term has non-singlet taste structure [3] and explicitly breaks xα -reflection and charge symmetry,
but is invariant under their product [3, 4].

Point-split vector and axial currents are obtained with chiral Ward-Takahashi identities. Their
conservation has been verified at 1-loop level [1]. Counterterms which explicitly break hypercubic
symmetry are indispensable for restoring isotropy to the continuum limit. One relevant and two
marginal operators share the Karsten-Wilczek term’s symmetry. Renormalisation of the Karsten-
Wilczek action at 1-loop level is covered in great detail in [1]. Mixing with these operators reflects
in anisotropies in the fermionic self-energy,

Σ = Σ1i/p+Σ2m0 +d1L i(γα pα)+ c1L
i
a

γα , (1.3)

and in the fermionic contribution to the vacuum polarisation,(
pµ pν(δαµ +δαν)−δµν(p2

δαµ δαν + p2
α)
)
×dP,1L. (1.4)

These anisotropies are removed by setting the coefficients to their 1-loop values,

c = c1L =−29.5320CF b, d = d1L =−0.12554CF b, dP =−12.69766C2 b, b =
g2

0
16π2 . (1.5)

The coefficients inherit the taste structure of the Karsten-Wilczek term:

c1L(−ζ ) =−c1L(ζ ), d1L(−ζ ) = +d1L(ζ ), dP,1L(−ζ ) = +dP,1L(ζ ). (1.6)

If minimally doubled fermions are employed in numerical simulations, it is desirable to determine
the coefficients non-perturbatively. Boosted perturbation theory [5] employing Parisi’s coupling
yields estimates (cf. table 1), which are often close to non-perturbative values.
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β U4
0 c1L cBPT d1L dBPT dP,1L dP,BPT

6.0 0.594 −0.249 −0.420 −0.00106 −0.00179 −0.0893 −0.150
6.2 0.614 −0.241 −0.393 −0.00103 −0.00167 −0.0865 −0.141

Table 1: Boosted 1-loop coefficients serve as starting point for non-perturbative determinations. Non-
perturbative effects are estimated with the fourth root of the average plaquette, U0 = 4

√
〈∑µ<ν Pµν〉. Numer-

ical values for U4
0 are taken from [6].

2. Non-perturbative renormalisation

The violation of hypercubic symmetry in the Karsten-Wilczek action and its counterterms
manifests itself as an anisotropy of the transfer matrix of QCD. Nevertheless, fully-tuned countert-
erm coefficients must minimise the degree of anisotropy which is observed at finite lattice spacing.
Hence, the most straightforward strategy for non-perturbative tuning is a comparison of computa-
tions of correlation functions in different euclidean directions. Since the strength of anisotropies
due to the action is a priori unclear, additional causes of anisotropy (e.g. L 6= T ) must be avoided.

2.1 Numerical procedure

β a [ f m] r0 L nc f g m0 (×100) c d (×1000)
6.0 0.093 5.368 32 100 2,3,4,5 [−1.2,+0.3] 0.0
6.0 0.093 5.368 32 100 1,2,3,4,5 [−0.65,−0.20] [−8,+2]
6.0 0.093 5.368 48 40 2 [−0.65,+0.0] 0.0
6.2 0.068 7.360 32 100 1,2,3,4,5 [−0.65,−0.20] [−8,+4]
6.2 0.068 7.360 48 40 2 [−0.65,+0.0] 0.0
5.8 0.136 3.668 32 100 2 [−0.65,+0.0] [0,+2]

Table 2: Symmetric lattices (T = L) were used for studies of the anisotropy. The parameter c is varied
with smaller step size close to the estimates from boosted perturbation theory. The scale was fixed using the
Sommer parameter according to [7].

In the quenched approximation, dP equals zero due to the absence of virtual quark loops1 and
four-dimensional parameter space is spanned by {β ,m0,c,d}. Simulations are performed on sym-
metric lattices (L = T ) using the temporal Karsten-Wilczek action (xα = x0) with default Wilczek
parameter (ζ =+1). Gaussian smearing [8] at the source is combined with local and smeared sink
operators using HYP-smeared [9] link variables. Here, we restrict the discussion to pseudoscalar
correlation functions.

The relevant parameter c is varied at fixed coupling β and quark mass m0 in order to establish
an smooth relation between hadronic quantities and renormalisation coefficients. The small size
of d in perturbation theory suggests that its influence is mild; hence, we set d = 0 initially. The
difference of pseudoscalar fit masses of both directions, the mass anisotropy,

∆(M2
PS) = (Mx0

PS)
2− (Mx3

PS)
2, (2.1)

is used as a tuning criterion for c at a fixed value of d and several values of the the bare quark mass.
Finally, effects due to the variation of d are studied.
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Figure 1: Effective mass plots (β = 6.0, L = 48, m0 = 0.02, d = 0) using the “log” mass exhibit isolated
plateaus of forward (e.g. 8-16) and backward (e.g. 32-40) states. Local (red) and smeared sink (blue) are in
good agreement. The left plot shows c = 0.0 and the right plot shows c =−0.45.

2.2 Determination of the pseudoscalar mass

The Karsten-Wilczek term explicitly breaks T -symmetry. Thus, it is conceivable that forward
and backward propagating states in the x0-direction are not degenerate. Hence, x0-correlation func-
tions must not be symmetrised. Forward and backward states are separated when the effective mass
is obtained as a logarithm of the correlation function,

mlog(t) = log
C (t)

C (t +1)
. (2.2)

The single exponential does not provide a good description of the data around T/2 (cf. figure 1).
Fits to the correlation function probe forward and backward states independently:

CPS(t)≡ A f e−m f t +Abe−mb(T−t). (2.3)

The 4-parameter fit extracts forward and backward masses as independent parameters. “Log” mass
plateaus agree within errors with definitions of the “cosh” mass. No numerical evidence of broken
T-symmetry was found regardless of c within 1σ (cf. table 3).

c m f (SL) mb (SL) ms (SL) m f (SS) mb (SS) ms (SS)
+0.0 0.3373(19) 0.3370(18) 0.3372(14) 0.3355(17) 0.3375(18) 0.3364(13)
−0.45 0.3036(25) 0.3027(18) 0.3029(15) 0.3014(18) 0.3008(15) 0.3010(13)

Table 3: Forward and backward fit masses in the x0-direction (β = 6.0, L = 48, m0 = 0.02, d = 0) with
local and smeared sink agree within 1-2σ . A tentative “cosh” mass fit is consistent within 1σ .

c M (SL, [12,23]) M (SL, [20,23]) M (SS, [12,23]) M (SS, [20,23])
+0.0 0.2823(9) 0.2831(17) 0.2963(10) 0.2917(20)
−0.45 0.2961(11) 0.2973(21) 0.3046(10) 0.3048(23)

Table 4: Fit masses of smeared-local and smeared-smeared correlation functions in the x3-direction (β =

6.0, L = 48, m0 = 0.02, d = 0) agree within 3σ .

Effective masses in the x3-direction (cf. figure 2) are computed from correlation functions,
which were symmetrised over forward and backward propagating states. Excited state contribu-
tions persist longer than in figure 1. The plateaus are more extended in the vicinity of cBPT (cf.
table 1). Figure 2 demonstrates that effective masses of x3-correlation functions with local and
smeared sink interpolators reach 1-2σ level agreement only after 16-18 time slices at c = 0.0 (cf.
table 4). Therefore, this analysis of the mass anisotropy with L = 32 (cf. section 3.1) uses only
local sinks.

1In full QCD, dP is fixed by restoring the isotropy of the plaquette at fixed c,d (cf. [1]).
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Figure 2: Effective mass plots (β = 6.0, L= 48, m0 = 0.02, d = 0) in the x3-direction using the “cosh” mass
are calculated from symmetrised correlation functions with local (red) and smeared (blue) sink. Plateaus are
considerably shorter for c = 0 (left plot) than for c =−0.45 (right plot).

3. Numerical results
3.1 Minimisation of the anisotropy
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Figure 3: Fit masses (β = 6.0, L = 32, m0 = 0.02, d = 0.0) are interpolated in c ∈ [−0.65,−0.25]. The
minimum of ∆(M2

PS) as a function of c (right plot) is shallow with respect to statistical errors.

The minimisation of eq. (2.1) as a function of c and d defines the renormalisation condition.
The squared fit masses (Mxµ

PS)
2 with local sinks are interpolated as functions of c (cf. figure 3). The

interpolations are directly subtracted and the minimum is computed,

cmin =−
(a

x0
1 −a

x3
1 )

2(a
x0
2 −a

x3
2 )

, (Mxµ

PS)
2 = axµ

0 +axµ

1 c+axµ

2 c2. (3.1)

cmin is extrapolated (cf. figure 4) in the quark mass m0 with a linear and a quadratic ansatz, which
agree at 1-2σ level. The error is dominated by the lightest quark mass.
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Figure 4: Dependence on d of cmin (β = 6.0, L = 32) cannot be resolved (left plot). The minimal fit mass
anisotropy is consistent with zero on a 2σ level (right plot).

We conclude that use of the parameter estimates ( cBPT , dBPT ) from boosted perturbation
theory removes the mass anisotropy within our statistic and systematic accuracy. However, careful
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β cBPT cmin (lin.) ∆(M2
PS) (lin.) cmin (quad.) ∆(M2

PS) (quad.)
6.0 −0.420 −0.432(08)stat 0.0015(07)stat −0.418(13)stat 0.0019(08)stat

6.2 −0.393 −0.413(16)stat −0.0015(12)stat −0.414(35)stat −0.0006(13)stat

Table 5: The different cmin (L = 32, d = 0.0) from linear and quadratic extrapolations in the quark mass
(am0 ∈ [0.1,0.5]) agree on 1-2σ level. The mass anisotropy scatters around 0 within 1-2σ .

study of additional observables [10] indicates slightly different values (c(β = 6.0) = −0.45(1),
c(β = 6.2) =−0.40(1)), which we use in studies of the tuned action.

3.2 Simulations with the tuned Karsten-Wilczek action

β c d m0 (×1000) (r0m0) (r0MPS)
2 (MPS)

2 [MeV ]
(r0MPS)

2

(r0m0)

6.0 −0.45 −0.001 20 0.107 1.595(4) 629(2) 23.7(1)
6.0 −0.45 −0.001 10 0.054 1.147(4) 452(2) 24.5(2)
6.0 −0.45 −0.001 5 0.027 0.831(5) 328(2) 25.7(3)
6.0 −0.45 −0.001 3.65 0.020 0.718(5) 283(2) 26.3(4)
6.2 −0.40 −0.001 20∗ 0.147∗ 1.834(9)∗ 724(3)∗ 22.8(2)∗

6.2 −0.40 −0.001 10 0.074 1.327(8) 524(3) 23.9(3)
6.2 −0.40 −0.001 5 0.037 0.965(8) 381(3) 25.3(4)
6.2 −0.40 −0.001 3.65 0.027 0.834(9) 329(3) 25.9(5)
6.2 −0.40 −0.001 2.66 0.020 0.720(9) 284(4) 26.5(7)
6.2 −0.40 −0.001 1.94 0.014 0.622(10) 245(4) 27.1(9)
6.2 −0.40 −0.001 1.41∗ 0.010∗ 0.557(18)∗ 219(7)∗ 29.9(19)∗

Table 6: The tuned action is simulated on lattices with T = 48. The spatial extent is L = 24 for β = 6.0 and
L = 32 for β = 6.2. Two parameter sets (marked with “∗”) have only L = 24.

The action with tuned parameters is applied to a study of the spectrum of light pseudoscalar
mesons (cf. table 6). Ground state masses below 250MeV are achieved without encountering
exceptional configurations. Since the squared ground state mass is approximately linear in the
quark mass (cf. figure 5), it is tentatively extrapolated like a Goldstone boson including quenched
chiral logarithms [10],

(r0 MPS)
2 = (r0 B0)(r0 m0)((1−δ )−δ log(m0/r0)) . (3.2)
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Figure 5: The pseudoscalar mass at β = 6.0 and β = 6.2 agrees well (left plot). The ratio (r0MPS)
2/(r0m0)

shows finite volume effects and quenched chiral logarithms.

However, the separation of chiral logarithms from effects due to finite volume or higher chiral
orders is difficult. With the enlarged volume, the statistical error of δ decreases and agreement
between different lattice spacings is improved considerably.
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We obtain the estimate 0.10(1) ≤ δ ≤ 0.16(5)) and find consistency of δ between different
lattice spacings and different volumes within 2σ .

4. Conclusions

The first simulations with minimally doubled fermions in the quenched approximation have
been performed with various volumes and different lattice spacings (cf. table 2). Pseudoscalar
correlation functions do not show any numerical evidence of T-parity violation. This surprising
result is currently under scrutiny [10]. Anisotropies of the pseudoscalar masses are applied to
determine c non-perturbatively. Results are largely insensitive to d and agree well with estimates
from boosted perturbation theory (cf. table 5). However, separate methods for obtaining c and d
with reduced errors are still desirable [10].

The tuned action (cf. table 6) is used in studies of light pseudoscalar mesons (MPS . 250MeV )
without exceptional configurations. After taking quenched chiral logarithms into account, the
ground state is consistent with a Goldstone boson. This remarkable result requires a detailed study
of the nature of the pseudoscalar ground state [10].
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