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With the advent of Ginsparg-Wilson fermions problems involving chiral symmetry can be treated
on the lattice with controllable error. One prominent solution to the Ginsparg-Wilson relation are
overlap fermions. Unfortunately, simulations with chiral fermions are still extremely hard to sim-
ulate both in terms of computational demand and algorithmic reliability. In this proceedings, we
present the experiences with our GPU-based implementation of overlap fermions. We show re-
sults on the computation of low-energy couplings for non-leptonic kaon decays using topological
zero-mode wave functions.
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1. Introduction

The quantitative or even qualitative understanding of non-leptonic kaon decays, K→ ππ , from
first principles remains a formidable challenge despite decades of work. The main difficulty is that
non-perturbative low-energy dynamics of the strong interaction play a significant role in these
processes and it has turned out to be difficult to reduce the systematic errors of lattice computations
to a tolerable level. This is because of the prohibitive cost of treating chiral symmetry, final state
kinematics and physical quark masses on the lattice.

Instead of the direct computation of K→ ππ decay amplitudes, another approach is to deter-
mine, via lattice simulations, the low-energy constants (LECs) of the effective chiral weak Hamil-
tonian that describes these decays. This is done by matching lattice measurements of suitable
correlation functions to the same correlation functions computed within chiral perturbation theory
(χPT). A direct advantage of this procedure is that this matching does not necessitate physical
kinematics or physical quark masses, as long as the regime of validity of χPT is reached. This
however requires sufficiently large volumes and small quark masses.

The ordering in which the volume is increased and the quark masses are decreased can be
chosen freely. When approaching the chiral limit first by decreasing the quark masses, the so-called
ε-regime of χPT is reached, and in this kinematical regime it is possible to work out next-to-leading
order corrections to χPT without introducing any more LECs than those at leading order.

At the same time, carrying out lattice simulations in the ε-regime is quite demanding. The
Ginsparg-Wilson formulation of lattice fermions, which possess an exact chiral symmetry in the
limit of vanishing quark masses, have made such simulations possible. The required computational
cost, however, is still an order of magnitude higher than lattice simulations with for example the
relatively cheap simulation of Wilson fermions.

In order to satisfy the increased demand for computational power, we utilize graphic pro-
cessing units (GPUs) for our lattice simulation code. Ever since GPUs started to become highly
parallelized computational units, the lattice community has tried to exploit their high amount of
computational power[1, 2, 3]. With the advent of general programming frameworks for GPUs like
NVIDIA CUDA, it is possible access the computational side of the GPU in a straightforward way.
Details on our implementation of GPU-based lattice simulations can be found in [4] and [5].

In this proceedings, we concentrate on the reproduction of previously established results in
order to verify our GPU-based implementation of our lattice simulation code. Primarily, we closely
follow the work in [6], in which the rôle of the charm quark mass in K→ ππ was discussed based
on a strategy proposed in [7]. We show results on the leading-order weak LECs in a theory with
a light charm quark, that is in a four-flavour theory with an exact SU(4) chiral symmetry in the
valence sector, which is also referred to as the GIM limit.

2. Low-energy couplings from zero-mode wave functions

In [8], the observables used for the matching between lattice simulation and χPT were three-
point correlation functions of two left-handed currents and a weak operator. Here, we consider
correlation functions of two pseudo-scalar densities and a weak operator. These correlators de-
velop poles in 1/m2 in the ε-regime when evaluated in sectors of non-vanishing topological charge,
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Lattice β V |ν | N|ν |cfg x0/a, y0/a am

A1 5.8458 164 1–5 288, 279, 279, 223, 159 5, 11 0.0015, 0.0025, 0.005

Table 1: The simulation parameters.

which is defined like in [9]. We will show that the residues of these poles are easier to compute
numerically than the correlation function themselves, primarily, because certain propagators can be
substituted by projectors to the zero-mode wave functions and need not to be computed explicitly.

2.1 Correlation functions in the fundamental theory and chiral perturbation theory

The weak Hamiltonian in the SU(4)-symmetric case, mu = md = ms = mc = m, can be written
as a linear combination of four-quark operators of the kind

O±1 = [O1]rsuv± [O1]rsvu, (2.1)

[O1]rsuv ≡ (ψ̄rγµP−ψ̃u)(ψ̄sγµP−ψ̃v), (2.2)

and a first order chiral expansion in the non-perturbative regime yields the low-energy couplings
g+1 and g−1 . See [6] for more details.

The task is then to match for the coefficients g±1 in the chiral limit by comparing lattice simu-
lations with χPT predictions. The observable we use to carry out the matching in a finite volume
are the bare three-point function in a fixed topological sector of charge ν ,

A±ν (x0− z0,y0− z0)≡− lim
m→0

(mV )2
∫

xxx

∫
yyy
〈∂x0P(x)O±1 (z)∂y0P(y)〉ν , (2.3)

with the bare pseudo-scalar density P = iΨ̄γ5Ψ̃ and the quark mass m. We consider derivatives of
the sources w.r.t. fixed time-slices x0, y0 in order to avoid contaminations from higher order LECs.

After carrying out the contractions and inserting the spectral representation of the quark prop-
agator, the expansion of the three-point function in terms of zero-mode wave functions vi(x) for
positive topological charge is then given by

Āν ≡ lim
m→0

1
L3

∫
zzz
〈
|ν |

∑
i=1

v†
i (z)γµηi(z;x0)

|ν |

∑
j=1

v†
j(z)γµη j(z;y0)〉ν , (2.4)

Ãν ≡− lim
m→0

1
L3

∫
zzz
〈
|ν |

∑
i, j=1

v†
i (z)γµη j(z;y0)v

†
j(z)γµηi(z;x0)〉ν . (2.5)

We have introduced an extended propagator ηi(z;x0) = ∂x0

∫
xxx P−χSm(z,x)Pχvi(x), i.e. the inversion

of the Dirac operator with a topological zero-mode as a source.
It is convenient to normalize these three-point functions with bare two-point functions of the

pseudo-scalar density and the left-handed current, L0 = Ψ̄γ0P−Ψ̃,

−iBν(x0− z0) = lim
m→0

(mV )
∫

xxx
〈∂x0P(x)L0(z)〉ν . (2.6)
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Figure 1: Left: The renormalized two-point function T Bν(t) for the smallest quark mass am = 0.0015 and
the fit to NLO predictions in the interval ∆t = 5a – 11a. Right: The fit parameters αν , βν as a function of
|ν |. In the case for βν , the dashed line is the best NLO fit, the solid line is the best fit to NNLO predictions.
In both cases open/full symbols correspond to data without/with LMA. Error bars are in most cases smaller
than the symbol size.

Similar to the case of the three-point function, we can obtain the zero-mode expansion

Bν(x0− z0) = lim
m→0

1
L3

∫
zzz
〈
|ν |

∑
i=1

v†
i (z)γ0ηi(z;x0)〉ν . (2.7)

This two-point function can be related through the non-singlet axial Ward identity to the two-
point function of two pseudo-scalar densities, considered in [12], and we obtain an important rela-
tion

ZABν(x0− z0) = Dν(x0− z0)≡
1
V

∫
xxx,zzz
〈
|ν |

∑
i, j=1

v†
j(x)vi(x)v

†
i (z)v j(z)〉ν . (2.8)

On the right-hand side the limit m→ 0 has been taken analytically while it needs to be taken
numerically on the left-hand side. Therefore, the Ward identity allows for a non-trivial test on our
ability to approach the necessary limits in this procedure.

At next-to-leading order (NLO) chiral perturbation theory, the two-point function is predicted
to have the following dependence on the topological charge

TBν(x0− z0) = |ν |
{

1+
2ρ|ν |
(FL)2 h1(τx)

}
, (2.9)

where τx ≡ (x0− z0)/T , ρ ≡ T/L the aspect ratio and 2h1(τ)≡ [(τ mod 1)−1/2]2−1/12, while
for the normalized three-point function we expect

R±ν =
¯Aν(x0− z0,y0− z0)± ˜Aν(x0− z0,y0− z0)

Bν(x0− z0)Bν(y0− z0)
=
(

1∓ 1
|ν |

)[
1± r±(z0)

]
. (2.10)

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
2
4

Lattice QCD with overlap fermions Bjoern Walk

0.98
1.00
1.02

0.98
1.00
1.02

0.98
1.00
1.02

0.98
1.00
1.02

0.000 0.001 0.002 0.003 0.004 0.005 0.006
am

0.98
1.00
1.02

Figure 2: Chiral extrapolation on the time-averaged ratio Dν(T )/Bν(t) normalized to ẐA = 1.710 for the
topological sectors |ν |= 1 – 5. Where not visible, error bars are smaller than the symbol size.

The function r±(z0) is a function of z0 only and is independent on the topology ν , and can be
evaluated numerically.

3. Numerical results

We have carried out simulations in the quenched approximations. In Tab. 1, we show the
simulation parameters for a symmetric lattice with T = L ' 2fm. The chiral quark propagator is
computed on quenched background gauge configurations, using the Neuberger-Dirac operator with
s = 0.4. A detailed overview of the numerical implementation can be found in [11]. We have also
used low-mode averaging (LMA) as a technique to reduce statistical fluctuations of the signal of
the correlation functions.

On the left side of Fig. 1, we show the results on the two-point function Bν(t) (see Eq. (2.7))
in the topological sectors |ν | = 1 – 5 at the lightest quark mass. Open symbols correspond to
results without LMA while for the full symbols LMA has been used. There is a strong dependence
on |ν |, as expected from χPT. We have considered a two-parameter fit of the form T Bν(t) =
αν +2βνh1(t/T ), with h1 given in Eq. (2.9). We have fitted the data in the time interval ∆t = 5a –
11a and linearly extrapolated the results of αν and βν to the zero mass limit.

On the right-hand side of Fig. 1, the results of αν and βν as a function of |ν | are given. In
the case of αν , the NLO prediction αν = |ν | is extremely well reproduced. The prediction for βν

depends on the value of F . The dashed line in the figure corresponds to a fit to the NLO prediction
with F left as a free parameter. The best fit values are FL = 1.60(8) with χ2

red = 4.6. In order
to take into account higher order chiral corrections, we take advantage of the Ward identity (cf.
Eq. (2.8)) and consider a mid-point expansion of the form T Bν(t) = γν +δν(t/T −1/2)2. For the
dependence of δν on the topological charge ν see [12]. The values for δν agree with those for βν .
Leaving F as a free parameter, the results of the fit for NNLO is FL = 1.10(2) with χ2

red = 1.8.
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Figure 3: R±ν /(1∓1/|ν |) in different topological sectors as a function of z0/T for fixed x0 = 5, y0 = 11, at
the smallest quark mass am = 0.0015. The horizontal lines represent the 1σ boundaries of the LO fit.

|ν | [g+1 ]
bare [g−1 ]

bare [g+1 g−1 ]
bare [g−1 ]

bare

2 0.66(17) 1.73(57) 1.12(48) 1.70(48)
3 0.79(8) 1.54(29) 1.19(24) 1.51(32)
4 0.86(4) 1.75(19) 1.51(19) 1.76(22)
5 0.82(3) 1.47(12) 1.21(10) 1.48(19)

w.a. (|ν |> 2) 0.83(3) 1.55(9) 1.27(8) 1.59(13)
χ2

red 0.4 0.8 1.0 0.5

Table 2: Values of the bare low-energy couplings obtained from the LO fit in the time interval |z0| ≤ a.

As mentioned before, the Ward identity in Eq. (2.8) is a good test of the extrapolation m→ 0.
In Fig. 2, we show the results for ZA ≡ Dν(t)/Bν(t) as a function of am in different topological
sectors, normalized to the value ẐA = 1.710 obtained for example in [13]. In the limit m→ 0, we
expect the ratio to approach unity in all topological sectors, which is well reproduced by the data.
From these results we can infer that the small residual extrapolation to zero quark mass is under
good control.

In Fig. 3, we show the results for the bare ratios R±ν (x0− z0,y0− z0)/(1∓1/|ν |) as a function
of τ = z0/T , at fixed x0 = 5, y0 = 11 for the smallest quark mass. From Eq. (2.10), we expect
R±ν = [g±1 ]

bare(1∓1/|ν |) at LO, therefore fitting the data to a constant around z0 = 0 is sufficient to
extract the LECs [g±1 ]

bare. The 1σ boundaries of the fit are included in the figure and the numerical
values are summarized in Tab. 2. We see a good agreement with the results from [6]

Especially for the ratio R−ν , NLO corrections are clearly visible. One possible strategy is
to obtain [g−1 ]

bare indirectly from [g+1 g−1 ]
bare and [g+1 ]

bare. The first quantity is extracted from the
product R+

ν R−ν , in which the NLO correction vanishes. Results have been summarized in the last
two columns of Tab. 2. We see that the combined extraction and the individual extraction agree
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with each other. We are working on a fit to the NLO predictions (cf. Eq. (2.10)), however, results
were not yet available.

4. Conclusions and outlook

In this proceedings, we have shown results on the GPU-based computation of low-energy
couplings for non-leptonic kaon decays using ratios of three-point functions of pseudo-scalar den-
sities and a weak four-quark operator and two-point functions of pseudo-scalar densities and the
left-handed current. We have concentrated on the reproduction of previously established results in
order to verify our implementation. We see very good agreement for both predictions from χPT
and the results established in [6]. We are fully confident that our GPU-based implementation is
valid and can be used to extend the analysis to the case of a non-degenerate charm quark (outside
the GIM limit). There, additional diagrams need to be computed in order to investigate the role of
an active charm quark on the process K→ ππ .

This work has been partially funded by the DFG via GK1581 and the “Forschungszentrum
EMG”. We are indebted to the “Center for Computational Sciences” in Mainz and the Helmholtz-
Intitute Mainz for access to the GPU cluster on which simulations in this work were performed.
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