

PoS

Large-scale simulations with chiral symmetry

JLQCD Collaboration: T. Kaneko^{*a,b}, S. Aoki^c, G. Cossu^a, H. Fukaya^d, S. Hashimoto^{a,b}, J. Noaki^a

^a High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan

^b School of High Energy Accelerator Science, The Graduate University for Advanced Studies (Sokendai), Ibaraki 305-0801, Japan

^c Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

^d Department of Physics, Osaka University, Osaka 560-0043, Japan

We carry out a comparative study among five-dimensional formulations of chirally symmetric fermions about the algorithmic performance, chiral symmetry violation and topological tunneling to find a computationally inexpensive formulation with good chiral symmetry. With our choice of the lattice action, we have launched large-scale simulations on fine lattices aiming at a precision study of light and heavy quark physics. We report on the comparative study, current status of the large-scale simulations, and preliminary results on the residual quark mass and auto-correltion.

31st International Symposium on Lattice Field Theory - LATTICE 2013 July 29 - August 3, 2013 Mainz, Germany

*Speaker.

[†]E-mail: takashi.kaneko@kek.jp

1. Introduction

In the last several years, we performed an extensive study of QCD vacuum and light hadron physics by using the overlap action which exactly preserves chiral symmetry [1]. Our next target is a precision study of heavy flavor physics in collaboration with flavor factory experiments, such as the SuperKEKB / Belle II experiment, for a stringent test of the Standard Model.

Since the overlap action is computationally too expensive to simulate small lattice spacings $a \ll m_c^{-1}$ on reasonably large lattices, we carried out a systematic comparative study of a class of five-dimensional formulations that approximately satisfy the Ginsparg-Wilson relation to construct a computationally cheap formulation with good chiral symmetry. In this article, we report on the comparative study and the status of the on-going large-scale simulations with our choice of the lattice action.

2. Comparative study

We test five-dimensional fermion formulations [2] in this comparative study. The four-dimensional effective Dirac operator is given by

$$\frac{1+m_q}{2} + \frac{1-m_q}{2} \gamma_5 \varepsilon_M(H_M), \qquad (2.1)$$

where the Hermitian kernel operator H_M and the approximation of its sign function ε_M can be chosen by tuning parameters appearing in the five-dimensional Dirac operator. Popular choices of H_M are the Wilson kernel $H_W = \gamma_5 D_W$, where D_W is the Wilson-Dirac operator, for the overlap fermions, and the Shamir kernel $H_T = \gamma_5 D_W / (2 + D_W)$ for the standard domain-wall fermions. We also test a scaled Shamir kernel $2H_T$ [2]. While $2H_T$ has the same condition number as H_T , its lowlying eigenvalues are scaled up by a factor of 2. These kernels are combined with the Zolotarev (ε_Z) and polar decomposition (ε_p) approximations. By applying up to 6 level stout smearing [3] ($N_{smr} = 0, 3, 6$), we test 8 different formulations listed in Table 1.

Table 1: Simulation setup in our comparative study. The first three columns show our choices of the fivedimensional formulation: the number of smearing $N_{\rm smr}$, kernel operator H_M and sign function approximation ε_M . We also list simulation parameters, namely β and the bare quark mass in lattice units am_{ud} , as well as results for a^{-1} and M_{π} .

N _{smr}	H_M	\mathcal{E}_M	β	a^{-1} [GeV]	am _{ud}	M_{π} [MeV]
0	H_W	ϵ_Z	4.27	1.98(6)	0.0095, 0.0060, 0.0035	463(17), 375(17), 346(25)
0	H_T	\mathcal{E}_Z	4.11	1.92(6)	0.0200, 0.0120, 0.0065	543(18), 419(15), 318(15)
0	H_T	ϵ_p	4.11	1.97(5)	0.0200, 0.0090, 0.0040	623(19), 483(16), 400(15)
0	$2H_T$	ϵ_p	4.11	1.94(6)	0.0200, 0.0120, 0.0065	554(18), 434(17), 356(16)
3	H_W	ϵ_Z	4.29	1.94(6)	0.0145, 0.0090, 0.0050	472(18), 401(17), 330(17)
3	H_T	ϵ_p	4.18	2.00(8)	0.0250, 0.0170, 0.0090	534(23), 423(20), 374(23)
3	$2H_T$	ϵ_p	4.18	2.06(9)	0.0250, 0.0170, 0.0090	524(24), 469(24), 364(25)
6	$2H_T$	ϵ_p	4.18	2.11(6)	0.0250, 0.0170, 0.0090	511(17), 430(16), 337(20)

Figure 1: Left panel: number of MD steps $N_{\text{MD},P=0.80}$ to attain 80% acceptance rate. Data for different formulations are plotted in different symbols as a function of M_{π}^2 . Right panel: CG iteration count N_{inv} as a function of M_{π}^{-2} .

Figure 2: A measure of CPU cost per HMC trajectory $N_{\text{MD},P=0.80}N_{\text{inv}}$. The left panel shows all data, whereas the right panel is an enlargement of a region of small $N_{\text{MD},P=0.80}N_{\text{inv}}$ to focus on computationally cheaper formulations.

We carry out numerical simulations of two-flavor QCD by using these formulations and the tree-level Symanzik gauge action to study the performance of the Hybrid Monte Carlo (HMC) algorithm, chiral symmetry violation and topological tunneling. On a $16^3 \times 32$ lattice, we simulate three pion masses in the range of $300 \leq M_{\pi}$ [MeV] ≤ 600 at a single lattice cut-off around $a^{-1} \simeq 2$ GeV. The fifth dimensional size is set to $N_5 = 12$. We set the range of the Zolotarev approximation $\varepsilon_Z(x)$ to $x \in [0.2, 7.0]$ ([0.4, 7.0]) for H_W without (with) smearing, and [0.1, 1.5] for H_T . Our statistics are 1,000 trajectories in each simulation. Parameters and results for a^{-1} and M_{π} are summarized in Table 1, where $r_0 = 0.462(11)(4)$ fm [4] is used as input to fix a.

In each simulation, we keep the acceptance rate of $P \simeq 0.7 - 0.9$ using a moderately small step size $\Delta \tau$ for the Molecular Dynamics (MD) integration. The number of the MD steps to attain a reference value P = 0.8, which is denoted by $N_{\text{MD},P=0.80}$ in the following, is estimated from the relations holding at small $\Delta \tau$

$$P = \operatorname{erfc}\left(\frac{1}{2}\sqrt{\langle \Delta H \rangle}\right), \quad \langle \Delta H \rangle \propto \Delta \tau^4, \tag{2.2}$$

Figure 3: Left panel: a comparison of bare residual quark mass in lattice units, am_{res} . Right panels: distribution of eigenvalue λ for several choices of the kernel operator. Note that we only plot the lowest 100-150 eigenvalues for thin-link kernels ($N_{snr}=0$).

Figure 4: Monte Carlo history of topological charge. Left panels compare data for the Shamir-type kernels $(2H_T \text{ and } H_T)$ with ε_p and $N_{\text{smr}} = 3$, whereas right panels show data for $2H_T$ with different N_{smr} (0 and 6).

where $\langle \Delta H \rangle$ represents the Monte Carlo average of the change of the Hamiltonian due to the discretized MD integration. Figure 1 compares $N_{\text{MD},P=0.80}$ and the iteration count for CG per MD step, denoted by N_{inv} , among the tested formulations. We observe that these two measures of the CPU cost significantly decrease by i) switching from H_W to $(2)H_T$, ii) switching from ε_Z to ε_p , and iii) applying smearing $(N_{\text{smr}} \ge 3)$. On the other hand, there is no large difference in these measures between Shamir-type kernels $(H_T \text{ and } 2H_T)$ and between $N_{\text{smr}} = 3$ and 6.

The product $N_{\text{MD},P=0.80}N_{\text{inv}}$ can be considered as a measure of the CPU cost per HMC trajectory. As plotted in Fig. 2, the overlap formulation, namely the combination of H_W and ε_Z , turns out to be computationally very demanding. We can achieve about a factor of 20 acceleration at $M_{\pi} \simeq 400$ MeV: a factor of 5 by using $(2)H_T$ and ε_p , and an additional factor of 4 by smearing. We may expect even bigger gain at smaller quark masses.

These computationally cheaper formulations are, however, off from practical use, if they largely violate chiral symmetry. We compare residual quark mass m_{res} in Fig. 3. Since the minmax approximation can satisfy $|\varepsilon_Z(x)|^2 \sim 1$ in its approximation range, ε_Z leads to the least m_{res} at a given N_{snr} . With our choice of $N_5 = 12$, however, $|\varepsilon_p(x)|^2$ largely deviates from unity at $x \leq 0.3$,

<i>am_{ud}</i>	am_s	MD	$N_{\rm MD}$	traj	Р	$\langle \Delta H angle$	$\langle e^{-\Delta H} angle$	min/traj
0.019	0.040	LF	10	3000	0.78(1)	0.19(1)	0.99(1)	2.7
0.012	0.040	LF	13	2000	0.78(1)	0.17(1)	1.00(1)	3.5
0.012	0.040	0	3	1000	0.89(1)	0.07(2)	1.01(1)	2.0
0.007	0.040	LF	16	1000	0.74(1)	0.23(2)	1.04(3)	4.4
0.007	0.040	0	4	2000	0.90(1)	0.06(1)	1.00(1)	2.6
0.019	0.030	LF	10	3000	0.79(1)	0.17(1)	1.00(1)	2.8
0.012	0.030	LF	13	2000	0.79(1)	0.14(1)	1.02(2)	3.6
0.012	0.030	0	3	1000	0.88(1)	0.10(3)	1.00(2)	2.0
0.007	0.030	LF	16	2000	0.72(1)	0.27(2)	1.00(2)	4.5
0.007	0.030	0	4	1000	0.89(1)	0.08(2)	0.99(1)	2.6

Table 2: Status of our simulations at $a^{-1} \simeq 2.4$ GeV. The third column shows the choice of the MD integrator, namely the leap-frog (LF) or Omelyan (O) integrator. We also list time per HMC trajectory on the whole machine of BlueGene/Q at KEK in the last column.

where thin-link kernels have many low-lying modes as shown in Fig. 3. Scaling of the kernel $(H_T \rightarrow 2H_T)$ and smearing $(N_{\rm smr}=3)$ are very effective to suppress these low-lying modes leading to an order of magnitude smaller $m_{\rm res}$ compared to the standard domain-wall fermions. Larger $N_{\rm smr}$ is better in reducing $m_{\rm res}$ but may distort short distance physics. We refer to Ref. [5] for more detailed discussions.

Figure 4 shows examples of the Monte Carlo history of the topological charge Q. A lowlying eigenvalue flips its sign along a tunneling between topological sectors. While scaling and smearing suppress the low-lying modes, the comparison in Fig. 4 suggests that these techniques do not prevent the topological tunneling at $a^{-1} \simeq 2$ GeV.

From this comparative study, we conclude that the combination of $2H_T$ and ε_p with $N_{smr} = 3$ is the best choice among the tested formulations.

3. Large-scale simulations

We have launched large-scale simulations of $N_f = 2+1$ QCD with good chiral symmetry, namely with m_{res} well below the physical up and down quark mass $m_{ud,phys}$. The tree-level Symanzik gauge action is combined with the fermion formulation chosen by the comparative study to be consistent with our $O(a^2)$ -improvement program for heavy quark physics [6]. For controlled continuum and chiral extrapolations, we are planning to simulate the pion masses of 500, 400, 300 MeV (and even smaller) at four values of the lattice cut-off $a^{-1} \simeq 2.4$, 3.0, 3.6 and 4.8 GeV. Finite volume effects are suppressed to 1-2 % level by keeping $M_{\pi}L \gtrsim 4$. These simulations are being carried out on BlueGene/Q at KEK (6 racks with a peak speed of 1.258 PFLOPS).

Table 2 shows the current status of our simulations on a $32^3 \times 64 \times 12$ lattice at $\beta = 4.17$, where a^{-1} determined from r_0 is expected to be $\simeq 2.4$ GeV. The three values of the bare light quark mass m_{ud} correspond to $M_{\pi} \approx 500$, 400 and 300 MeV, whereas we take two strange quark masses $(m_s$'s) near its physical value $m_{s,phys}$. We employ the Hasenbusch preconditioning [7] with the mass parameter am' = 0.150 for two degenerate light flavors, and the rational HMC algorithm [8] for the

am _{ud}	am_s	am'	$N_{\rm MD}$	traj	P _{HMC}	$\langle \Delta H angle$	min/traj
0.0120	0.0250	0.10	4	430	0.84(2)	0.10(2)	3.6
0.0080	0.0250	0.08	4	330	0.85(2)	0.06(2)	4.2
0.0042	0.0250	0.04	4	235	0.92(3)	0.04(2)	5.9
0.0120	0.0180	0.10	4	_	_	_	_
0.0080	0.0180	0.08	4	260	0.86(1)	0.05(1)	4.3
0.0042	0.0180	0.04	4	280	0.86(3)	0.02(2)	6.0

Table 3: Status of our simulations at $a^{-1} \simeq 3.6$ GeV.

single strange flavor. We had started our simulations with the simple leap-frog MD integrator, which was later switched to the Omelyan integrator [9] leading to a factor of 2 speed-up. We keep reasonably high acceptance rate $P \simeq 0.7 - 0.9$ and confirm that $\langle e^{-\Delta H} \rangle = 1$ derived from the area preserving property of HMC is well satisfied.

We are also carrying out simulations at a larger lattice cut-off $a^{-1} \simeq 3.6$ GeV ($\beta = 4.35$) on $48^3 \times 96 \times 8$. The current status is summarized in Table 3. We increase the unit trajectory length to $\tau = 2$ based on our preparatory study on the auto-correlation (see below). Our choice of the fermion action as well as careful tuning of m' at each m_{ud} enable us to achieve the high acceptance rate $P \gtrsim 0.85$ with small $N_{\rm MD} = 4$. We expect half a year to accumulate 10,000 MD time on this large volume by using BlueGene/Q at KEK. This will be accelerated by further optimization of our simulation code [10].

We plot $m_{\rm res}$ from these simulations in Fig. 5, where the renormalization factor to the $\overline{\rm MS}$ scheme at 2 GeV is roughly estimated by matching our estimate of the bare value of $m_{s,{\rm phys}}$ with a world average [11] in that scheme. It turns out that $m_{\rm res} \simeq 0.5$ MeV at $a^{-1} \simeq 2.4$ GeV with $N_5 = 12$. At $a^{-1} \simeq 3.6$ GeV, $m_{\rm res}$ is even smaller ($\simeq 0.1$ MeV) with smaller $N_5 = 8$. While these $m_{\rm res}$'s are already much smaller than $m_{ud,{\rm phys}}$, we are considering to further reduce $m_{\rm res}$ by reweighting [12].

In Fig. 6, we compare the topological tunneling at $a^{-1} \sim 2.4$ and 3.6 GeV. The auto-correlation largely increases by approaching the continuum limit with the unit trajectory length τ held fixed. As suggested in Ref. [13], we observe that topology changes more frequently with larger τ in our study in quenched QCD at a similar cut-off $a^{-1} \simeq 3.5$ GeV. This observation leads us to increase τ when exploring a^{-1} above 2.4 GeV to accelerate our Monte Carlo sampling of topological sectors.

In this article, we reported on our new project of large-scale simulations of $N_f = 2+1$ QCD with good chiral symmetry. The lattice action is chosen by the comparative study to reduce m_{res} well below the physical quark masses and achieve a factor of 20 acceleration compared to the overlap formulation. We are planning to accumulate high statistics of 10,000 MD time for a precision study

Figure 6: Left panels: Monte Carlo history of topological charge Q in our simulations of $N_f = 2 + 1$ QCD at $a^{-1} \simeq 2.4$ (left-top panel) and 3.6 GeV (left-bottom panel). Right panel: history of Q in our study in quenched QCD at $a^{-1} \simeq 3.5$ GeV with different values of τ .

of QCD. Our preliminary results on the light hadron physics were presented at this conference [14].

Numerical simulations are performed on Hitachi SR16000 and IBM System Blue Gene Solution at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale Simulation Program (No. 12/13-04). This work is supported in part by the Grants-in-Aid for Scientific Research (No. 21674002, 25287046), the Grant-in-Aid for Scientific Research on Innovative Areas (No. 2004: 20105001, 20105002, 20105003, 20105005, 23105710), and SPIRE (Strategic Program for Innovative Research).

References

- S. Aoki *et al.* (JLQCD and TWQCD Collaborations), Prog. Theor. Exp. Phys., 01A106 (2012). See also X. Feng, PoS LATTICE 2013, 008; X. Feng *et al.*, *ibid.*, 480; T. Iritani *et al.*, *ibid.*, 376 (in these proceedings).
- [2] R.C. Brower, H. Neff and K. Orginos, Nucl. Phys. (Proc.Suppl.) 140, 686 (2005); arXiv:1206.5214 [hep-lat].
- [3] C. Morningstar and M. Peardon, Phys. Rev. D 69, 054501 (2004).
- [4] C. Aubin et al. (MILC Collaboration), Phys. Rev. D 70, 094505 (2004).
- [5] S. Hashimoto et al. (JLQCD Collaboration), PoS LATTICE 2013, 431 (in these proceedings).
- [6] Y-G. Cho *et al.* (JLQCD and UKQCD Collaborations), PoS LATTICE 2013, 255 (in these proceedings).
- [7] M. Hasenbusch, Phys. Lett. B 519, 177 (2001).
- [8] I. Horváth, A.D. Kennedy and S. Sint, Nucl. Phys. (Proc.Suppl.) 73, 834 (1999).
- [9] I.P. Omelyan, I.M. Mryglod and R. Folk, Phys. Rev. E 65, 056706 (2002); T. Takaishi and P. de Forcrand, Phys. Rev. E 73, 036706 (2006).
- [10] G. Cossu et al. (JLQCD Collaboration), PoS LATTICE 2013, 482 (in these proceedings).
- [11] G. Colangelo et al. (FLAG working group of FLAVIANET), Eur. Phys. J. C 71, 1695 (2011).
- [12] H. Fukaya et al. (JLQCD Collaboration), PoS LATTICE 2013, 127 (in these proceedings).
- [13] S. Schäfer, R. Sommer, F. Virotta (ALPHA Collaboration), Nucl. Phys. B 845, 93 (2011); Lüscher and Schäfer, JHEP 1107, 036 (2011).
- [14] J. Noaki et al. (JLQCD Collaboration), PoS LATTICE 2013, 263 (in these proceedings).