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1. Introduction

The Banks-Casher relation [1] connects the low lying spectrum of the Dirac operator with the
spontaneous chiral symmetry breaking in the following way

lim
λ→0

lim
m→0

lim
V→∞

ρ(λ ,m) =
Σ

π
. (1.1)

Eq. (1.1) relates the chiral condensate Σ to the spectral density ρ(λ ,m). The recently intro-
duced method based on spectral projectors [2] offers a new strategy to compute spectral observ-
ables, such as the chiral condensate, in an affordable way. Moreover it allows us, via the connection
to density chains, to compute this quantity using a representation which is free of short distance
singularities and therefore leads to the correct continuum limit.

The integrated spectral density or mode number ν(M,m) is defined as the number of eigen-
values λ of the hermitian Dirac operator D†D below a certain threshold value M2. To study the
renormalization and O(a) cutoff effects properties of the mode number it is advantageous to con-
sider the spectral sums σk(µ,m) which are directly related through the following expression

σk(µ,m) =
∫

∞

0
dM ν(M,m)

2kM
(M2 +µ2)k+1 . (1.2)

In particular, it is convenient to write the spectral sums σk in terms of density chains like

σ3(µ,m) =−a24
∑

x1,...,x5

〈
P+

12(x1)P−23(x2)P+
34(x3)P−45(x4)P+

56(x5)P−61(0)
〉
, (1.3)

where P±ab = ψaγ5τ±ψb are charged pseudoscalar densities, τ± are defined in flavor space and µ is
the twisted mass. ψa = (ua,da) represent isospin doublets of twisted mass valence fermions. The
index a = 1, . . . ,k indicates the doublet; in this particular example we add 6 doublets to the theory,
which is the minimum number of flavors that still guarantees the renormalizability as it was shown
in [2].

Nevertheless, in the end, the mode number contains the same information as the spectral den-
sity and therefore it is directly linked to the chiral condensate as proposed in Ref. [2]

ΣR =
π

2V

√
1−
(

µR

MR

)
∂

∂MR
νR(MR,µR). (1.4)

Notice that νR(MR,mR) = ν(M,m), the mode number is a renormalization group invariant [2].
It goes beyond the scope of this proceedings to explain in detail the spectral projectors method

and its implementation to compute the chiral condensate among other observables. Thus, for further
details we refer to the original article Ref.[2] and also to Ref. [3] for the implemention of the setup
used here. For a computation of the topological susceptibility in the same set up using spectral
projectors, following the method described in Ref.[4], see Ref. [5]. In this contribution we present
the continuum limit results obtained for the chirally extrapolated condensate Σ for N f = 2 and
N f = 2+1+1 dynamical flavors of maximally twisted mass fermions [6, 7, 8, 9] using the spectral
projectors method. In addition we discuss the O(a) improvement of this quantity, since it is, in
principle, possible that contact terms that arise in the Symanzik expansion introduce O(a) cut-off
effects and spoil automatic O(a) improvement.
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2. O(a) improvement of the chiral condensate

The representation of the mode number and the spectral density of the Wilson operator through
density chains correlator as in Eq. (1.3) allows to discuss the renormalization and improvement
properties of such quantities. This is particularly important when computing the mode number
using Wilson twisted mass fermions at maximal twist. The maximal twist condition guarantees au-
tomatic O(a) improvement of all physical quantities [10]. In fact one can show that the observable
introduced in Eq. (1.3) is even under R1,2

5 transformations given by χi(x)→ iγ5τ1,2χi(x), χi(x)→
χi(x)iγ5τ1,2, where χi refers to the valence and sea twisted mass quarks. Consequently the auto-
matic O(a) improvement obtained by tuning to maximal twist should apply.

Density chains correlators are affected by short distance singularities and the integration over
the whole space-time of such singularities generates additional O(a) terms that could spoil the
property of automatic O(a) improvement. In this section we argue that those terms vanish at
maximal twist. The details of the proof will be discussed in a forthcoming publication [11].

The short distance singularities on the r.h.s of Eq. (1.3) could correspond to additional O(a)
terms in the represenation of the lattice correlator in the Symanzik effective theory. More specifi-
cally these O(a) are produced by the short distance expansion of two consecutive densities, since
the short distance behavior of three or more densities leads to O(a2) or higher order terms.

We can study the short distance singularities of a product of two operators through the operator
product expansion (OPE). For a generic twist angle products like P+

ab(x)P
−
bc(0) will have an OPE

for x→ 0 containing scalar densities.
Taking into account the presence of the contact terms and the standard Symanzik expansion

we can write for the renormalized observable introduced in Eq. (1.3)

σ3,R(µR,mR) = −
∫

d4x1d4x2d4x3d4x4d4x5
〈
P+

12(x1)P−23(x2)P+
34(x3)P−45(x4)P+

56(x5)P−61(0)
〉

0

+a S.T.+a C.T . (2.1)

In Eq. (2.1) 〈〉0 represents the continuum expectation values. The term labelled with S.T.
corresponds to the standard terms appearing in the Symanzik expansion and the one labelled with
C.T. corresponds to the O(a) terms arising from the short distance singularities in the product of
two densities. If we tune our lattice action parameters to achieve maximal twist one can use the
standard arguments leading to automatic O(a) improvement to show that the S.T. vanish.

For the discussion of the C.T we keep generic values for the twisted and untwisted quark
masses. An example of the C.T. is given by

∫
d4x2d4x3d4x4d4x5

〈
S↑13(x2)P+

34(x3)P−45(x4)P+
56(x5)P−61(0)

〉
0
+

+
∫

d4x2d4x3d4x4d4x5

〈
P−23(x2)P+

34(x3)P−45(x4)P+
56(x5)S

↓
62(0)

〉
0
, (2.2)

where S↑,↓ac = ψa
1
2(1± τ3)ψc .

We can now use non-singlet axial Ward-Takahashi identities to rewrite Eq. (2.2) in a convenient
form. For twisted mass fermions at a generic twist angle we have
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Figure 1: (left) Mode number ν as a function of the renormalized threshold parameter MR for N f = 2 at
β = 3.9 and aµ = 0.004. The line corresponds to a linear fit to all 5 points. (right) Result of the derivative
∂ν/∂M for different ranges in the linear fit. The x-axis represents the points included in the linear fit, where
1 corresponds to the lowest and 5 the largest value of M respectively.

∫
d4x2d4x3d4x4d4x5

〈
S↑13(x2)P+

34(x3)P−45(x4)P+
56(x5)P−61(0)

〉
0
+ (2.3)

+
∫

d4x2d4x3d4x4d4x5

〈
P−23(x2)P+

34(x3)P−45(x4)P+
56(x5)S

↓
62(0)

〉
0

= 2m
∫

d4x2d4x3d4x4d4x5

∫
d4x1

〈
P+

12(x1)P−23(x2)P+
34(x3)P−45(x4)P+

56(x5)P−61(0)
〉

0 ,

where m is the untwisted quark mass.
All the other terms stemming from the short distance singularities can be treated in an analo-

gous manner.
For the sake of simplicity we have chosen to write a particular example for six flavors, however,

a generalization of this derivation for a generic number of flavors is straightforward.
Our analysis indicates that despite the presence of additional O(a) terms in density chain

correlators, those terms turn out to be proportional to the untwisted quark mass m at a generic twist
angle, thus they are bound to vanish at maximal twist.

3. Chiral and continuum extrapolation of the chiral condensate

In order to extract the chiral condensate through Eq. (1.4) we computed the mode number
using spectral projectors at several values of the threshold parameter M in a range from around 60
to 120 MeV. In this region a linear behavior is expected, which allows us to compute the derivative
which appears in Eq. (1.4) from a simple linear fit. Fig. 1(left) shows the observed linear behavior
for a particular ensemble.

To reliably estimate the correct range of M, where the mode number behaves linearly, repre-
sents an important source of systematic error in this calculation. We performed a comprehensive
analysis of the systematic contributions to the error and concluded that the error coming from the
fitting range, is in fact the most prominent [3]. Recent studies [12] found large deviations from
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Figure 2: Chiral extrapolation (left) of r3
0Σ for N f = 2 at three different values of the lattice spacing. Con-

tinuum limit (right) of chirally extrapolated r0Σ1/3 for N f = 2.

the linear behavior in their data and concluded that NNLO effects could play an important role in
the chiral extrapolation of the condensate. In our case, however, with the available data, we do not
observe statistically significant deviations which shows that such effects are very mild in our setup.
To show this mild effect in Fig. 1(right) the result of the derivative which appears in Eq. (1.4) for
different ranges is shown, i.e. including different points showed in Fig. 1. One can see an agree-
ment in the result for the four lowest values of M as expected. The value of the mode number
corresponding to the largest M seems to slightly deviate from the linear behavior. We consider
such deviation in our final systematic error. However, results from different fitting ranges are still
statistically compatible.

All the results presented in this section were computed using ensembles generated by the ETM
collaboration. For further details we refer to the extended reference [3] where all the relevant details
are discussed.

3.1 Results for N f = 2

In this section we summarize the results of the chiral condensate for N f = 2 dynamical fermions
of maximally twisted mass fermions. The details of the simulations can be found in Refs. [13, 14].

Fig. 2 (left) shows the chiral extrapolation of the dimensionless ratio r0Σ for three different
lattice spacings which correspond to a = 0.085, 0.067 and 0.054 fm respectively [15]. The range
of renormalized quark masses is from 15 to 45 MeV. We perform a linear extrapolation to the
chiral limit as suggested in Ref. [2], since the NLO effects are negligible for the mentioned ranges
of quark masses and M, as we have explicitly tested.

The continuum limit of the chirally extrapolated condensate is shown in Fig. 2 (right) and
leads to the following result r0Σ1/3 = 0.685(16)(32), where the first error quoted combines the
statistical error and the error obtained from the uncertainty in the estimation of ZP and from r0/a in
quadrature. The systematic error corresponding to the uncertainty in the linear regime of the mode
number is given as the second error quoted.

All the errors presented in this article were computed using the method described in Ref. [16],
whereas in Ref. [3] the bootstrap with blocking method was applied. Thus the results slightly differ
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Figure 3: Chiral extrapolation (left) of r0Σ for N f = 2+1+1 at three different values of the lattice spacing.
Continuum limit (right) of chirally extrapolated r0Σ1/3 for N f = 2+1+1.

although they remain perfectly compatible. In Ref. [3] the result is compared to others found in the
literature and a very good agreement is observed.

3.2 Results for N f = 2+1+1

In this section we summarize the results of the chiral condensate, described in detail in Ref. [3],
for N f = 2+1+1 dynamical fermions of maximally twisted mass fermions [13, 17, 18].

Again we perform a chiral extrapolation following the strategy presented in Ref. [2] for three
different values of the lattice spacing a = 0.086, 0.078 and 0.061 fm respectively [18]. Fig. 3 (left)
shows the results at different values of the renormalized quark mass in a range between 13 and 45
MeV. The line represents the extrapolation at leading order of χPT.

In Fig. 3 (right) the continuum extrapolation is plotted. Again we extrapolate in a2 since, as we
showed in the previous section, the chiral condensate is O(a) improved for twisted mass fermions
at maximal twist.

The final result for N f = 2+1+1 is r0Σ1/3 = 0.683(19)(18). The errors quoted represent
the same uncertainties as in the result presented for N f = 2. Our value found for N f = 2+ 1+ 1
flavours is compatible with the continuum limit value found for N f = 2 twisted mass fermions and
quoted in the previous section.

If we compare the errors of both, the result for N f = 2 and for N f = 2+1+1, one can see that
the data are less sensitive to the variations in the fit interval for N f = 2+ 1+ 1 than for N f = 2.
This is mostly due to the fact that slopes for the case of N f = 2+ 1+ 1 flavors are smaller which
contributes to decreasing the systematic error.
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