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1. Introduction

The topological susceptibility, a quantity that expressesfluctuations of the topological charge
of gauge fields, can be linked ton-point correlation functions of sufficiently many scalar and pseu-
doscalar quark densities, the so-called density chain correlation functions or density chains. It was
shown in Ref. [1, 2] that density chains provide a definition of the topological susceptibility that
is free of short-distance singularities and regularization-independent. Moreover, this definition can
be combined with the method of spectral projectors [3] to evaluate the topological susceptibility
efficiently in terms of computing time. The first applicationof spectral projectors to the quenched
case was discussed in Ref. [4] and our preliminary results for the dynamical case, using Wilson
twisted mass fermions, were shown in Ref. [5]. We refer to theupcoming publication for a more
comprehensive discussion of our results [6].

In these proceedings, we discuss the issue ofO(a)-improvement of the topological suscepti-
bility. Twisted mass fermions are said to be automaticallyO(a)-improved at maximal twist [7].
Specifically, this means that on-shell quantities that areR5-parity even (defined below) can not
haveO(a) cut-off effects. However, the topological susceptibilityis defined via density chains that
include integrals (sums) over all space time points leadingto contact terms with short distance
singularities. The presence of contact terms can, in principle, spoilO(a)-improvement. We use
Operator Product Expansion (OPE) to show that this is not thecase. For a similar proof, concern-
ing the improvement of the chiral condensate, we refer to Ref. [8] in these proceedings. After the
discussion of the improvement, we also summarize some of ournumerical results.

2. Topological susceptibility from density chains

In the continuum, the relation between the topological chargeQ and density chain correlation
functions can be established via the equation Tr{γ5 f (D)} = f (0)Q, whereD is the Dirac operator
and f (λ ) is any continuous function that decays rapidly enough at infinity [2].

We will work with twisted mass fermions [9, 10]. Therefore, we need an expression for the
topological susceptibility using this formulation. We introduce doublets of quarksχi = (ui di)

T ,
where the subscript labels the doublet. An example expression for the topological susceptibility is:

χtop = µ6 σ2;1 ≡
〈Q2〉

V
, (2.1)

where:
σ2;1(µ) = a20 ∑

x1...x5

〈S+
41(x1) P−

12(x2) P+
23(x3) P−

34(x4) S+
56(x5) P−

65(0)〉 , (2.2)

andS±i j = χ iτ±χ j , P±
i j = χ iτ±γ5χ j , V is the volume and all twisted quark masses are taken to beµ .

It can be shown that this definition ofχtop is related to the following spectral sum:

σk;l (µ) =
〈

Tr
{

γ5(D
†D+ µ2)−k

}

Tr
{

γ5(D
†D+ µ2)−l

}〉

(2.3)

and hence its computation can be carried out with spectral projectorsPM, which project into the
subspace spanned by the eigenvectors ofD†D that correspond to all eigenvalues that are below
some threshold valueM2. For details of spectral projectors, we refer to the original publication [3].
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Since twisted mass fermions are not chirally invariant, Eq.(2.1) forχtop is not renormalization
group invariant. The relevant multiplicative renormalizations are the following:PR = ZPP, SR =

ZSS, µR = ZP
−1µ , where the subscriptR denotes renormalized quantities. The presence of two

scalar densities in Eq. (2.1) hence implies the renormalization of χtop with (ZS/ZP)2, i.e. the
expression for the renormalized susceptibility,χtop,R, reads:

χtop,R =
Z2

S

Z2
P

〈Q2〉

V
. (2.4)

In the following, we will drop the subscriptR and always consider the renormalized topological
susceptibility. The evaluation of this observable with spectral projectors is straightforward and for
the details we refer to Ref. [4]. Here we just give the final formulae:

χtop =
Z2

S

Z2
P

〈C 2〉− 〈B〉
N

V
, (2.5)

whereN is the number of used stochastic sources,

C =
1
N

N

∑
k=1

(RMηk,γ5RMηk) , (2.6)

B =
1
N

N

∑
k=1

(RMγ5RMηk,RMγ5RMηk) , (2.7)

whereRM is a rational approximation to the projectorPM andηk are randomly generated pseud-
ofermion fields added to the theory. Let us note that in the limit of an infinite number of stochastic
sources, the observableC can be associated with the topological charge (cf. Eqs. (2.4) and (2.5)),
whose distribution, however, has to be corrected for the finite number of stochastic sourcesN to
obtain the correct topological susceptibility.

3. O(a)-improvement with twisted mass fermions at maximal twist

In this section, we sketch the proof ofO(a)-improvement of the topological susceptibility
evaluated with twisted mass fermions at maximal twist. For more details, we refer to an upcoming
publication [11].

For an on-shell observable to be automatically improved, itis sufficient that it remains invariant
under theR1,2

5 transformations defined by:χi(x) → iγ5τ1,2χi(x), χ i(x) → χ i(x)iγ5τ1,2, where with
the subscripti we generically indicate valence and sea twisted mass doublets.

As an example of a definition of the topological susceptibility in terms of density chains we
consider Eq. (2.1) where we takeQ2 expressed in terms of two closed density chains – one with
4 densities and the other with only 2, such that the total number is not smaller than 5, to guar-
antee the absence of non-integrable short-distance singularities. One can verify thatχtop given
by the above formula isR1,2

5 -parity even up to a charge conjugation transformation. However,
the automaticO(a)-improvement can still be spoiled by contact terms. In the following, we will
show that appropriate combinations of such contact terms areR

1,2
5 -parity odd and hence automatic

O(a)-improvement is preserved at maximal twist.
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We start with the Symanzik effective theory expansion of therenormalizedσ2;1:

σ2;1,R =

∫

d4x1 . . .d4x5〈S
+
41(x1)P

−
12(x2)P

+
23(x3)P

−
34(x4)S

+
56(x5)P

−
65(0)〉0

+a S.T.+a C.T+O(a2) , (3.1)

where the densities on the right-hand side are renormalizedoperators that with abuse of notation
we denote as the lattice densities. The term labelled with S.T. corresponds to the standard terms
appearing in the Symanzik expansion and the one labelled with C.T. corresponds to theO(a) terms
arising from the short distance singularities in the product of two densities. If we tune our lat-
tice action parameters to achieve maximal twist, one can usethe standard arguments leading to
automaticO(a) improvement to show that the S.T. vanish. An example of the C.T. is given by

∫

d4x2d4x3d4x4d4x5〈P
↑
42(x2)P

+
23(x3)P

−
34(x4)S

+
56(x5)P

−
65(0)〉0

+
∫

d4x1d4x2d4x3d4x5〈P
↓
31(x1)P

−
12(x2)P

+
23(x3)S

+
56(x5)P

−
65(0)〉0 , (3.2)

where the subindex〈〉0 denotes continuum expectation values and we have introduced the short-

hand notationP↑,↓
i j = χ i

(1±τ3

2

)

γ5χ j . These additionalO(a) terms originate from applying OPE to
all pairs of consecutive densities to the lattice correlator, which corresponds to the contact terms
that can introduceO(a) effects1. For example the product of a scalar and a pseudoscalar density at
short distance receives several contributions and the one with the smallest dimension is proportional
to the pseudoscalar density.

It is clear from the Symanzik expansion that forO(a)-improvement to be maintained, the terms
labelled as C.T. on the right-hand side (RHS) of Eq. (3.1) have to vanish.

As an example let us consider the term in Eq. (3.2). If we perform anR1
5 transformation only

for doublets 1−4 we obtain

〈P↑
42P

+
23P

−
34S

+
56P

−
65〉0 + 〈P↓

31P
−
12P

+
23S

+
56P

−
65〉0

R1
5−−→−〈P↓

42P
−
23P

+
34S

+
56P

−
65〉0−〈P↑

31P
+
12P

−
23S

+
56P

−
65〉0 . (3.3)

Up to a relabelling of flavors this linear combination is odd underR1,2
5 , i.e. it vanishes for twisted

mass fermions at maximal twist.
It can be similarly shown, by grouping the other terms in C.T.of Eq. (3.1), that all terms that

appear in the Symanzik expansion areR
1,2
5 odd, up to a charge conjugation transformation, and

hence vanish in the continuum limit and do not introduce additional O(a) cutoff effects. Moreover,
this proof holds also in the general case – for any density chain that can be written in terms ofD†D
(i.e. containing an even number of pseudoscalar and scalar densities).

4. Numerical results

In the previous section, we have shown that the topological susceptibility computed with
spectral projectors is automaticallyO(a)-improved at maximal twist. Now, we will present a
summary of our numerical results. For the setup and details of the simulations, we refer to
Refs. [12, 13, 6, 14].

1Three or more densities at the same point lead to cut-off effects ofO(an) with n≥ 2.
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(a) Nf = 2, β = 3.9
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(b) Nf = 2+1+1, β = 1.9
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(c) Nf = 2+1+1, β = 1.95
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(d) Nf = 2+1+1, β = 2.1

Figure 1: Renormalized quark mass dependence of the topological susceptibility for Nf = 2 (a) andNf =

2+1+1 (b,c,d). The straight line corresponds to a fit of LO SU(2)χPT.

4.1 Nf = 2

Our 2-flavour results are at a single lattice spacing of approx. 0.085 fm (β = 3.9), with pion
masses ranging from 300 to 450 MeV. The quark mass dependenceof the topological susceptibility
is shown in Fig. 1(a). Within the rather large errors, the behaviour of χtop is compatible with
LOχPT: χtop = Σµ/Nf , whereΣ is the chiral condensate andNf the number of light flavours. The
fit gives r0Σ1/3 = 0.650(22) (MS scheme atµ = 2 GeV). The quoted error includes the statistical
error and uncertainties fromr0/a andZP/ZS determinations. This can be compared to our results
from direct extraction: 0.696(20) (atβ = 3.9 in the chiral limit) or 0.689(33) (in the continuum
limit and in the chiral limit) [14].

4.2 Nf = 2+1+1

In the case ofNf = 2+ 1+ 1 simulations, we present data at 3 lattice spacings rangingfrom
around 0.061 to 0.086 fm, with pion masses down to 260 MeV. Thechiral behaviour of the topo-
logical susceptibility is shown in Figs. 1(b)-(d), separately at each lattice spacing. At our finest
lattice spacing (β = 2.1), we see a tendency towards the expected suppression of thetopological
susceptibility. The data are compatible with SU(2) LOχPT and since the data are well described by
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Figure 2: Continuum limit of the chiral conden-
sater0Σ1/3 (MS scheme atµ = 2 GeV) extracted
from χtop.

a.) β = 1.95, aµ = 0.0055
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Figure 3: Histogram of the observableC for
the ensemble:Nf = 2+ 1+ 1, β = 1.95, aµ =

0.0055.

the LO expression, we only attempted linear fits of the quark mass dependence. We compared two
kinds of fits: fits to the full quark mass dependence and fits with a cut abover0µR = 0.07 (around
mπ = 400 MeV) to account for the fact that LOχPT is not expected to work well at heavy pion
masses. We extracted the values ofr0Σ1/3 at each lattice spacing and then performed a continuum
limit extrapolation for both types of fits (in Fig. 2 we show only the fits with a mass cut), obtain-
ing the following value of the chiral condensate in the chiral limit ( MS scheme atµ = 2 GeV):
r0Σ1/3 = 0.651(61) (error as forNf = 2, combined with the error from continuum extrapolation).
The full fits yield in the continuum limit a compatible result: r0Σ1/3 = 0.619(58). We find good
agreement with our direct determination:r0Σ1/3 = 0.680(29) [14].

To conclude this proceeding, we would like to emphasize one important aspect. Our typical
precision forχtop at any given lattice spacing is of the order of 15-20%. Such precision is not
enough for robust NLOχPT fits and hence we only performed linear LO fits. However, forone of
our ensembles (Nf = 2+ 1+ 1, β = 1.95, aµ = 0.0055), we have considerably better statistics (a
factor of nearly 4 higher than typical for other ensembles).This allows to obtain a 9% precision
in χtop and sample all relevant topological sectors correctly – this is shown in the histogram of
the observableC (Fig. 3), which is almost perfectly Gaussian. Unfortunately, for other ensembles
we do not achieve good, i.e. symmetric and centered around zero Gaussian histograms (although
they are compatible with Gaussian within rather large errors) and we are not able to increase our
statistics within the existing ensembles due to autocorrelations. This means that a precise analysis
of the topological susceptibility (i.e. with errors≤ 10%) requires considerably longer Monte Carlo
runs than typically generated for most Lattice QCD applications.
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