PROCEEDINGS

OF SCIENCE

DESY 13-207
HU-EP-13/63
SFB/CPP-13-95

Topological susceptibility from twisted mass
fermions using spectral projectors

K. Cichy*@, E. Garcia-Ramos?, K. Jansen? and A. Shindlerd
aNIC, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany
bAdam Mickiewicz University, Faculty of Physics, Umultoav8E, 61-614 Poznan, Poland
“Humboldt Universitat zu Berlin, Newtonstr. 15, 12489 Bgrisermany
d]AS, IKP and JCHP, Forschungszentrum Jillich, 52428 JilBérmany
E-mail: kr zyszt of . ci chy@lesy. de,el ena. gar ci a. ranos@lesy. de,
karl.jansen@lesy. de,a. shindl er @z-juelich. de

We discuss the computation of the topological suscepihiising the method of spectral pro-
jectors and dynamical twisted mass fermions. We presenfpalysis concerning th®(a)-
improvement of the topological susceptibility and we shawnerical results folN; = 2 and
Nf =2+ 1+ 1 flavours, performing a study of the quark mass dependentegrims of leading
order chiral perturbation theory.

° )
,"'b ora®®

31st International Symposium on Lattice Field Theory - LIKH 2013
July 29 - August 3, 2013
Mainz, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Topological susceptibility from twisted mass fermionsigspectral projectors K. Cichy

1. Introduction

The topological susceptibility, a quantity that expreddastuations of the topological charge
of gauge fields, can be linked tepoint correlation functions of sufficiently many scaladaseu-
doscalar quark densities, the so-called density chaireletion functions or density chains. It was
shown in Ref. [1, 2] that density chains provide a definitidrin@ topological susceptibility that
is free of short-distance singularities and regularizatiaependent. Moreover, this definition can
be combined with the method of spectral projectors [3] tduata the topological susceptibility
efficiently in terms of computing time. The first applicatiohspectral projectors to the quenched
case was discussed in Ref. [4] and our preliminary resuttshi® dynamical case, using Wilson
twisted mass fermions, were shown in Ref. [5]. We refer toubeoming publication for a more
comprehensive discussion of our results [6].

In these proceedings, we discuss the issu@(@f)-improvement of the topological suscepti-
bility. Twisted mass fermions are said to be automatic@l(y)-improved at maximal twist [7].
Specifically, this means that on-shell quantities thatZgeparity even (defined below) can not
haveO(a) cut-off effects. However, the topological susceptibilgydefined via density chains that
include integrals (sums) over all space time points leadiingontact terms with short distance
singularities. The presence of contact terms can, in piecspoilO(a)-improvement. We use
Operator Product Expansion (OPE) to show that this is not#éise. For a similar proof, concern-
ing the improvement of the chiral condensate, we refer to Rgin these proceedings. After the
discussion of the improvement, we also summarize some afuwmerical results.

2. Topological susceptibility from density chains

In the continuum, the relation between the topological gh& and density chain correlation
functions can be established via the equatiohgt(D)} = f(0)Q, whereD is the Dirac operator
andf(A) is any continuous function that decays rapidly enough atitgf[2].

We will work with twisted mass fermions [9, 10]. Thereforee weed an expression for the
topological susceptibility using this formulation. Werimduce doublets of quarkg = (u; d;)T,
where the subscript labels the doublet. An example exme$sr the topological susceptibility is:

2
Xtop = UG 021= % ) (2.1)

where:
o) = 3 (Sj(xa) Pr(%) Py(Xa) Psg(xa) Sig(%s) Pes(0)) (2.2)

X1...X5

andeJF =XiT5X], Pﬁ[ = XiT*¥sX;j, V is the volume and all twisted quark masses are taken fo be
It can be shown that this definition gfop, is related to the following spectral sum:

o (1) = (Tr{ 6D+ )} 1r{ 50D+ 12! }) (2.3)

and hence its computation can be carried out with spectogggiorsPy,, which project into the
subspace spanned by the eigenvector®t that correspond to all eigenvalues that are below
some threshold value2. For details of spectral projectors, we refer to the orignslication [3].
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Since twisted mass fermions are not chirally invariant,&dL.) for xiop iS not renormalization
group invariant. The relevant multiplicative renormaliaas are the following:Pr = ZpP, S =
ZsS, Ur = Zp 1y, where the subscripR denotes renormalized quantities. The presence of two
scalar densities in Eq. (2.1) hence implies the renormtaizeof xiop With (Zs/Zp)?, i.e. the
expression for the renormalized susceptibiljypr, reads:
28 (@)
=—=-=" 2.4
Xtop,R Zlg Y; ( )
In the following, we will drop the subscrig® and always consider the renormalized topological

susceptibility. The evaluation of this observable with& e projectors is straightforward and for
the details we refer to Ref. [4]. Here we just give the finahiatae:

Zg <(52> _ <ﬁ”>

Xtop= 55— (2.5)

°Tz2 v

whereN is the number of used stochastic sources,

1 N
€ = N Z (RMnkv V?JRMUK)? (26)
K=1
1 N

B = N > (RumysRumi R ysRummi) (2.7)

=1
whereRy, is a rational approximation to the project®f, andny are randomly generated pseud-
ofermion fields added to the theory. Let us note that in thé liiran infinite number of stochastic
sources, the observab#e can be associated with the topological charge (cf. Eqs) éhd (2.5)),
whose distribution, however, has to be corrected for théefinumber of stochastic sourciisto
obtain the correct topological susceptibility.

3. O(a)-improvement with twisted mass fermions at maximal twist

In this section, we sketch the proof @f(a)-improvement of the topological susceptibility
evaluated with twisted mass fermions at maximal twist. Forardetails, we refer to an upcoming
publication [11].

For an on-shell observable to be automatically improved stfficient that it remains invariant
under theZx" transformations defined by (x) — iysT2xi(x), X; (X) — X; (X)iys T2, where with
the subscript we generically indicate valence and sea twisted mass dsuble

As an example of a definition of the topological susceptipilin terms of density chains we
consider Eq. (2.1) where we tak¥ expressed in terms of two closed density chains — one with
4 densities and the other with only 2, such that the total remb not smaller than 5, to guar-
antee the absence of non-integrable short-distance aiitigd. One can verify thakp given
by the above formula i@é’z—parity even up to a charge conjugation transformation. éiex,
the automatidO(a)-improvement can still be spoiled by contact terms. In tHwing, we will
show that appropriate combinations of such contact term@é’?—parity odd and hence automatic
O(a)-improvement is preserved at maximal twist.
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We start with the Symanzik effective theory expansion ofrére@rmalizedo,.;:

02,1R = / d*x ... d*X6 (S (%1) Pro(%2) Paa(Xa) Paa (Xa) St (%6 ) Pss (0) o
+aST.+aCT+0(a?), (3.1)

where the densities on the right-hand side are renormatipedators that with abuse of notation
we denote as the lattice densities. The term labelled with &®rresponds to the standard terms
appearing in the Symanzik expansion and the one labellé¢dQvik. corresponds to the(a) terms
arising from the short distance singularities in the pradefcwo densities. If we tune our lat-
tice action parameters to achieve maximal twist, one cantheastandard arguments leading to
automaticO(a) improvement to show that the S.T. vanish. An example of tie i€ given by

| o rad xad s (Ply(xe) P30 P0) S5 Pes(O) o
+ / d*xad*xad*xad*s (5 (X4 ) P2 (X2) Pya(Xs) Sk (%) Pas(0) o (3.2)

where the subindex)o denotes continuum expectation values and we have intrddingeshort-

hand notatiorPiE’l =X (M;TS) ¥5Xj. These additionaD(a) terms originate from applying OPE to
all pairs of consecutive densities to the lattice correjatdich corresponds to the contact terms
that can introduc®©(a) effects. For example the product of a scalar and a pseudoscalartyansi
short distance receives several contributions and the d@hdhe smallest dimension is proportional
to the pseudoscalar density.

It is clear from the Symanzik expansion that @(a)-improvement to be maintained, the terms
labelled as C.T. on the right-hand side (RHS) of Eq. (3.1ehawanish.

As an example let us consider the term in Eq. (3.2). If we |mBTfan%5l transformation only

for doublets 1- 4 we obtain

I ot p- o p | b —\ A nl o - I ptp- ot p-
<P42P2JE’>P34S;6P65>0 + <P31P12P2+35:J'>FGP65>0 — _<P42P23P3t18;6p65>0 - <P31P1+2P23S:J'>FGP65>0' (3-3)

Up to a relabelling of flavors this linear combination is oddierZg~, i.e. it vanishes for twisted
mass fermions at maximal twist.

It can be similarly shown, by grouping the other terms in @fTEq. (3.1), that all terms that
appear in the Symanzik expansion ﬁé‘Z odd, up to a charge conjugation transformation, and
hence vanish in the continuum limit and do not introduce taaftil O(a) cutoff effects. Moreover,
this proof holds also in the general case — for any densitinghat can be written in terms &@'D
(i.e. containing an even number of pseudoscalar and scartesitis).

4. Numerical results

In the previous section, we have shown that the topologigateptibility computed with
spectral projectors is automatical(a)-improved at maximal twist. Now, we will present a
summary of our numerical results. For the setup and detdikhe simulations, we refer to
Refs. [12, 13, 6, 14].

IThree or more densities at the same point lead to cut-oftesfief O(a") with n > 2.
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Figure 1: Renormalized quark mass dependence of the topologicadstilsidity for Ns = 2 (a) andN; =
2+ 1+1(b,c,d). The straight line corresponds to a fit of LO SU(PJT.

41 Ny =2

Our 2-flavour results are at a single lattice spacing of app@o085 fm 3 = 3.9), with pion
masses ranging from 300 to 450 MeV. The quark mass dependétieetopological susceptibility
is shown in Fig. 1(a). Within the rather large errors, thedwebur of xiop is compatible with
LOXPT: Xtop = ZH/N¢, where is the chiral condensate ai the number of light flavours. The
fit givesroX/3 = 0.65022) (MS scheme afi = 2 GeV). The quoted error includes the statistical
error and uncertainties from/a andZp/Zs determinations. This can be compared to our results
from direct extraction: 0.696(20) (@& = 3.9 in the chiral limit) or 0.689(33) (in the continuum
limit and in the chiral limit) [14].

42 N¢=2+4+1+1

In the case oN; = 2+ 1+ 1 simulations, we present data at 3 lattice spacings rarfgimg
around 0.061 to 0.086 fm, with pion masses down to 260 MeV.cHmal behaviour of the topo-
logical susceptibility is shown in Figs. 1(b)-(d), sepahatat each lattice spacing. At our finest
lattice spacing § = 2.1), we see a tendency towards the expected suppression tipilegical
susceptibility. The data are compatible with SU(2) /T and since the data are well described by
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Figure 2: Continuum limit of the chiral conden- Figure 3: Histogram of the observablg for
satero=!/3 (MS scheme att = 2 GeV) extracted the ensembleN; =2+1+1, B = 1.95, ay =
from Xop. 0.0055.

the LO expression, we only attempted linear fits of the quaaksmependence. We compared two
kinds of fits: fits to the full quark mass dependence and fith witut abovegur = 0.07 (around

m; = 400 MeV) to account for the fact that LY®’T is not expected to work well at heavy pion
masses. We extracted the valuesgd'/3 at each lattice spacing and then performed a continuum
limit extrapolation for both types of fits (in Fig. 2 we showlptthe fits with a mass cut), obtain-
ing the following value of the chiral condensate in the dhiirait (MS scheme au = 2 GeV):
roX/3 = 0.651(61) (error as folN; = 2, combined with the error from continuum extrapolation).
The full fits yield in the continuum limit a compatible resuth>/® = 0.61958). We find good
agreement with our direct determinatiapz /3 = 0.680(29) [14].

To conclude this proceeding, we would like to emphasize am@ortant aspect. Our typical
precision forxiop at any given lattice spacing is of the order of 15-20%. Suetipion is not
enough for robust NLPT fits and hence we only performed linear LO fits. Howeverpfoe of
our ensemblesNy =2+ 1+ 1, B = 1.95,au = 0.0055), we have considerably better statistics (a
factor of nearly 4 higher than typical for other ensembléd)is allows to obtain a 9% precision
in Xtop @and sample all relevant topological sectors correctly s thishown in the histogram of
the observabl&’ (Fig. 3), which is almost perfectly Gaussian. Unfortungtér other ensembles
we do not achieve good, i.e. symmetric and centered aroumod@aussian histograms (although
they are compatible with Gaussian within rather large sjrand we are not able to increase our
statistics within the existing ensembles due to autocaticels. This means that a precise analysis
of the topological susceptibility (i.e. with errors10%) requires considerably longer Monte Carlo
runs than typically generated for most Lattice QCD appiires.
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