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Study of Anomalous Mass Generation in N f = 1 QCD
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The U(1) axial symmetry in QCD is anomalously broken, and in the case of one flavor, a fermion
mass is generated by instanton-like gauge field configurations. Conventional continuum analysis
shows that this anomalously generated mass term is “soft” and goes away at large momentum due
to the low density of small instantons, distinguishing it from a normal mass term. However, it is
possible that there are enough lattice-scale instantons / dislocations to generate a “hard” fermion
mass, at least for a class of lattice gauge actions, leading to the mass ambiguity suggested by
Creutz. We conclude that, for N f = 1 QCD, there can be an additive renormalization of the
fermion mass generated by lattice-scale instantons for a class of lattice actions.
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1. Introduction

If the up quark has zero mass, the strong CP problem would be solved automatically. Some
people argue that it is indeed the case, while phenomenology studies suggest that it is not. In
reference [1], however, Creutz argued that the mass of the up quark is ambiguous, because of
confinement and chiral anomaly. We followed his idea futher in N f = 1 QCD, and expand on it.

On one hand, because of confinement, we can not define the up quark mass based on the pole
position of its propagator. There are many alternatives; we choose a generally accepted, regular-
ization independent way to define a fermion mass. It is call the RI/MOM [6] scheme. The fermion
mass definition is based on the Landau-gauge-fixed fermion propagator evaluated in momentum
space. The renormalization factor Zq (µ) and the renormalized mass mR (µ) could be extracted by

Zq (µ) =
Tr
[
/̄pS−1(p)

]
ip2

∣∣∣∣∣
p2=µ2

mR (µ) =
Tr
[
S−1(p)

]∣∣
p2=µ2

Zq (µ)
. (1.1)

On the other hand, we will show that the chiral anomaly plays an important role in the fermion
mass. Because of the anomaly, in some regularization schemes, just like a scalar particle, an ad-
ditive mass renormalization term is needed for the fermion. Normally, we do not have an additive
renormalization term for the fermion mass because the fermion mass is protected by chiral symme-
try and thus can receive only multiplicative quantum corrections. However, when interaction are
included, axial U (1) symmetry is anomalously broken, there is no a priori reason that the fermion
mass does not receive additive quantum corrections.

2. ’t Hooft Effective Lagrangian

’t Hooft has demonstrated a mechanism for such mass generation by studying the effect of a
classical instanton. A mass term will indeed be generated by instantons with radius between R and
R+dR given by [7][3]

R2

m
ρ (R)dR (2.1)

where ρ (R) is the density of instantons of radius R per unit space-time volume and per unit radius.
This result can be understood in a naive way. The fermion zero mode u0 (x) of an instanton

of radius R at the origin would contribute to the fermion Green’s function evaluated outside the
instanton as:

〈q(x)q(y)〉= u0 (x)
1
m

u0 (y) =
Rγµxµ

x4
1
m

Rγνyν

y4 (2.2)

In momentum space, for p� 1
R the contribution to the propagator from this fermion zero modes is:

S(p) =
∫

d4xe−ip·x 〈q(x)q(0)〉= 1
/p

R2

m
ρ (R)dR

1
/p

(2.3)

One can then immediately spot the anomalous mass term given in Eq. (2.1). We are interested in
a “hard” fermion mass which acts like a normal fermion mass term at all scales. This mass term
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cannot be generated by intantons of any fixed physical size, it can only come from instantons on
the cut-off scale or lattice scale if we use a lattice regularization:

manom ∼
a2

m
ρa (2.4)

where a is the lattice spacing, m is the input quark mass and ρa is the density of the lattice-scale
instantons.

’t Hooft has also calculated the density of instantons. For N f = 1, the density of instantons
ρ (R) of radius R is approximately [7]

ρ (R)dR∼ dR
R5 (mR)exp

(
− 8π2

g(R)2

)
(2.5)

The above formula should be most accurate when R is small. Thus, one might expect the density
of lattice-scale instantons to be

ρa ∼
1
a4 (ma)exp

(
−8π2

g2
a

)
. (2.6)

Here, ga is the coupling constant at the lattice scale. However, ρa and manom will vanish in the
continuum limit a→ 0, if ga follows the renormalization group equation.

At this point, one might conclude that the chiral anomaly will generate an anomalous mass,
but this mass term is “soft” and goes away at large momentum due to the low density of small
instantons, distinguishing it from a normal mass term. In this paper, we are going to prove that,
generally, this naive use of ’t Hooft’s result for a lattice-scale instanton need not be correct. The
above formula is certainly right for an instanton with a small but fixed physical size. However, the
density of instantons with a size that shrinks as we take the continum limit depends on how we
regularize the theory or, in the case of a lattice regularization, on the form of the lattice action.

3. Density of Lattice Scale Instanton

Since the density depends on the details of the regularization, to calculate it, we need to make
two assumptions about the form of the lattice action, so we would not consider some lattice action
which is too strange.

• The gauge action should be local, and in the continuum limit, the gauge links should become
very smooth. Thus, if we divide the infinite lattice into sub-blocks of fixed size in lattice
unit (e.g. 164), the probabilities of having an instanton in each block p164

inst should be almost
independent. This would contribute a factor of 1

a4 to the density of lattice-scale instantons.

• For an instanton-like gauge configuration, the fermion determinent should contribute only a
factor of ma to the probability. This factor comes from the fermion zero mode generated by
the instanton, which requires that the lattice fermion action possess good chiral symmetry.
Also, the presence of an instanton should not affect the other fermion modes too much, as is
the case in ’t Hooft’s calculation.
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Minimum action
instanton

∆Ω

Instanton-like
object (inst)

Ω

Figure 1: The diagram of gauge field space used
to obtain our lower bound

Ordered U = 1

∆Ω

Ω

Figure 2: The diagram of gauge field space used
to obtain our upper bound

Based on these two assumptions, we only need to calculate the probability of having one lattice
instanton in a sub-block of size 164 for a pure gauge theory p164

inst pure gauge. Then the density would
be

ρa ∼
1
a4 p164

inst ∼
1
a4 (ma) p164

inst pure gauge. (3.1)

The probability p164

inst pure gauge depends on the integration volume and the action

p164

inst pure gauge =

∫
inst [DU ]exp(−A [U ])∫
[DU ]exp(−A [U ])

. (3.2)

We can notice from the above formula that the integration volume does not depend on ga at all.
Since we are only interested in the density in the continuum limit where ga→ 0, the action is the
more important quantity, and the least action of a lattice scale instanton is the most important. So
we define a ga independent parameter α to parameterize the least action of a lattice-scale instanton

Ainst = α
8π2

g2
a
. (3.3)

The lattice-scale instanton with the least action will dominate in the ga→ 0 limit, because other
kinds of instantons will be exponentially suppressed. So the probability of having this least-action
instanton alone can be used as a lower bound of the probability in the ga→ 0 limit:

p164

inst pure gauge =

∫
inst [DU ]exp(−A [U ])∫
[DU ]exp(−A [U ])

>
∆Ωexp

(
−α

8π2

g2
a
− ε ′

g2
a

)
Ω

> exp
(
−(α + ε)

8π2

g2
a

) (3.4)

where Ω =
∫
[DU ] is the total integration volume, and ∆Ω is a small integration volume around the

minimum point as shown in Fig. 1. Here ∆Ω is choosen to be small but fixed. Within this volume,
the variation of the action about α

8π2

g2
a

is less then ε ′

g2
a
, where ε ′ is an arbitrarily small number. Since
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∆Ω

Ω
is a constant in the limit, we can simply drop it and change the explonential a little bit by

choosing another small number ε .
Although this seems to be a rather crude estimation, suprisingly, it is already good enough for

our purpose since we can work out the upper bound of this probability in a similar way and find

p164

inst pure gauge =

∫
inst [DU ]exp(−A [U ])∫
[DU ]exp(−A [U ])

<
Ωexp

(
−α

8π2

g2
a

)
∆Ωexp

(
− ε ′

g2
a

)
< exp

(
−(α− ε)

8π2

g2
a

)
,

(3.5)

where Ω =
∫
[DU ] is again the total integration volume, and ∆Ω is a small integration volume

around the vaccum point as shown in Fig. 2.
Having calculated the density of lattice-scale instantons in a quite general setting, recalling the

renormalization equation

8π2

g2
a
≈
(

11− 2
3

N f

)
ln

1
a
, (3.6)

and combine Eqs. (2.4) (3.1) (3.4) and (3.5), we get the anomalous quark mass for N f = 1 QCD

manom ∼ a
31
3 α−1. (3.7)

Thus, if the generated anomalous mass term does not vanish in the continuum limit, we should
have

α ≤ 3
31
≈ 0.097 (3.8)

The above criteria is a necessary and sufficient condition.

4. Exploration of the Design Space of Lattice Gauge Action

After talking so much about the α parameter, it’s time for us to explore the design space of
lattice actions to actually calculate this parameter for some gauge action and see how the minimum
instanton action depends on the form of lattice gauge action.

The minimum instanton action or the α parameter for a given lattice action is certainly a well
defined quantity if we restrict ourself to a finite space-time volume in lattice unit. However, it
is not practical to perform a complete search over all possible configurations. We estimate the
minimum instanton action by manually constructing an instanton based on a classical solution and
then slowly smoothing the gauge field to minimize the action. Obviously, there is no topological
barrier on a lattice unless we add some other restrictions [2]. If we make the field smooth enough,
we would end up with a free field. As a result, there must be a topological tunneling at some point.
We define the topological index as half the difference of the positive and negative eigenvalues of
γ5Dw (−1), the Hermitian Wilson Dirac operator at negative mass −1. [4] So we keep track of the
lowest ten eigenvalues of γ5Dw (−1), the tunneling happens when a eigenvalue cross zero.

We have applied this method to the Wilson action and the rectangular actions (see Fig. 3),
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Figure 3: Trajectories evolving from right to
left followed by the 10 lowest eigenvalues of
γ5Dw (−1) (y axis) and α (x axis) as a classical
instanton is smoothed.

U

Almost

Identical to

Special

Instanton

U
164

special inst

Figure 4: A sample arrangement of guage
field, where 3 blocks are occupied by guage
fields close to the special structure. Hence
Nspecial inst [U ] = 3

.

• Wilson action A = β

3 ∑x;µ<ν P1×1
µν , α < 0.83.

• Rectangular action A = β

24 ∑x;µ 6=ν P1×2
µν , α < 0.69.

The result obtained above is only an upper bound on the minimum instanton action. If there is a
lattice-scale instanton which is not close to a classical instanton, above procedure would not find
it. Also, there are many different ways to smooth the field, and many parameters for the initial
instanton to adjust. For Fig. 3 we use ape smearing. We have also tried other smooth methods
and different initial instanton sizes. The results are not changed much. Although we are not
completely sure, it seems that these two example actions do not satisfy the previous condition Eq.
3.8 and thus would not generate an anomalous mass term. However, these results do show that
α can be less than one and can be different for different action. The reason is that we are free to
change the lattice scale behavior without changing the continuum limit as long as we adjust the
bare parameters properly. This is the spirit of a renormalizable field theory. This suggests that for
some lattice action a lattice scale instanton could have a very small action and an anomalous mass
term could be generated. This is indeed true. Here is an artifitial example which would satisfy Eq.
(3.8) by construction. The idea is that we can design a lattice gauge action which would enhance a
certain kind of lattice-scale instantons by reducing its action. To define this lattice action, we need
to pick a special localized instanton configuration with a small size, say 164, to enhance. After a
special instanton configuration is choosen, the lattice gauge action is defined by

A [U ] = AWilson [U ]−Nspecial inst [U ]∆A (4.1)

where AWilson [U ] is the common Wilson action and ∆A is an adjustable parameter. Nspecial inst [U ] is
tricky. As is shown in Fig. 4, we would divide the configuration into small 164 blocks, Nspecial inst [U ]

is the number of blocks in which all the link variables are close enough to those of our chosen spe-
cial instanton configuration up to some symmetric transformation, e.g. gauge transformation, CP,
etc.
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Note that this lattice gauge action is still local, and by construction, there is now a lattice-scale
instanton, which has the same shape as the special instanton, with action

Ainst = α
8π2

g2
a

= AWilson

[
U164

special inst

]
−∆A (4.2)

Here AWilson

[
U164

special inst

]
denote the Wilson action of the special configuration. Since ∆A is ad-

justable, α can be any value we like, e.g. the value dictated by Eq. (3.8).

5. Conclusion

We have shown that the naive estimation of the density of cut-off scale instanton need not
be correct, because the density is regularization dependent. Then, we have shown that for some
lattice regularization scheme, there will be enough lattice scale instanton that an anomalous mass
term will be generated. This mass term does not depend on the input quark mass, thus it doesn’t
acquire a phase when we apply a chiral rotation to the fermion field. This property provides another
solution [5] to the strong CP problem for N f = 1 QCD. Suppose that for some reason we can not
add a explicit mass term to the single quark, and all the observed quark mass is generated by lattice
scale instantons, then the θ term would be absorbed by applying an appropriate chiral rotation to
the quark field. One difficulty for this approach is that we would need to carefully adjust α to keep
the quark mass small and finite.

It is quite straight forward to apply the above calculation to multi-flavor QCD. The only dif-
ficulty is that one would need negative α to generate a non-vanishing fermion mass. This does
not cause any serious problem, since each quark flavor would contribute an ma factor for every
instanton and suppress the lattice scale instanton density.
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