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1. Introduction

The possible presence of a θ term in the Lagrangian of Quantum Chromodynamics (QCD)
has been widely discussed in the past. This term corresponds to the Lagrangian density

LQCD +Lθ = LQCD− iθ q(x) = LQCD− iθ
g2

0
64π2 εµνρσ Fa

µν(x)F
a

ρσ (x) , (1.1)

in which θ multiplies the topological charge density q(x). Lθ violates P and CP symmetries and
it has intimately non-perturbative effects on the structure of non-Abelian gauge theories. Its value
has been stringently bounded from above by experiments, |θ |. 10−10. Anyhow, the dependence of
QCD on θ is very interesting both for theoretical and phenomenological reasons; an example is the
solution to the U(1)A problem, that is related to the mass of the η ′ meson [1]. In the present study
we focus on the effects induced by a non-zero θ term on the deconfinement phase transition of pure
gauge Yang-Mills theories. The CP symmetry present at θ = 0 suggests the critical temperature,
Tc(θ), to be an even function of θ . Therefore we parameterize it as

Tc(θ)/Tc(0) = 1−Rθ θ
2 +O(θ 4). (1.2)

In Section 2 we report our results [2, 3] for the value of the critical line curvature Rθ for the
SU(3) pure gauge theory. In our numerical lattice simulations we exploited analytic continuation
to avoid the sign problem. We support the hypothesis of analyticity in θ around θ = 0 with a study
at small real θ performed via reweighting. In Section 3 we show the nontrivial dependence of
the observables on the topological background, in particular close to the deconfinement transition.
Finally in Section 4 we discuss preliminary results for SU(4), in view of determining the large−Nc

behaviour of Rθ .

2. Critical Temperature dependence on θ in SU(3)

What is the fate of the critical deconfining temperature in QCD as the θ parameter is switched
on? Computations, performed in the context of various models, indicate that it decreases [2, 4,
5, 6, 7]. The first non-perturbative numerical results for Rθ in the SU(3) pure gauge theory were
presented in Ref. [2], where we performed simulations at imaginary values of θ to circumvent the
sign problem [8, 9, 10, 11]. In this approach the theory is assumed to be analytic around θ = 0,
a fact corroborated by our current knowledge about free energy derivatives with respect to θ at
θ = 0 [12, 13, 14, 15, 16, 17]. As for analytic continuation at nonzero µB [18, 19], we expect
that linear terms in θ 2, hence Rθ , can be reliably determined by analytic continuation of results of
simulations performed at imaginary θ = iθI term, i.e. from numerical studies of the lattice partition
function

ZL(T,θ) =
∫

[dU ]e−θLQL[U ]−SL[U ]. (2.1)

[dU ] indicates the integration over the gauge link variables Uµ(x). QL and SL are respectively
the lattice discretizations of the topological charge, QL = ∑x qL(x), and of the pure gauge action.
We considered the standard Wilson plaquette action, SL = β ∑x; µ>ν(1−ReTrΠµ ν(x)/Nc), where
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β = 2Nc/g2
0. The lattice discretized operator qL(x) is related, in general, to the continuum operator

q(x) by a multiplicative renormalization [20]:

qL(x)
a→0∼ a4Z(β )q(x)+O(a6), (2.2)

where a = a(β ) is the lattice spacing and Z→ 1 when a→ 0. The lattice parameter θL appearing in
Eq. (2.1) is related to the imaginary part of θ by θI = Z(β )θL. Albeit the associated renormalization
is large, a simple definition of qL(x) allows to keep Monte-Carlo algorithms rather efficient. Hence
we use the gluonic definition

qL(x) =
−1

29π2

±4

∑
µνρσ=±1

ε̃µνρσ Tr
(
Πµν(x)Πρσ (x)

)
, (2.3)

where ε̃µνρσ = εµνρσ for positive directions and ε̃µνρσ =−ε(−µ)νρσ . Standard heat-bath and over-
relaxation algorithms over SU(2) subgroups are allowed with this definition of qL(x) [11]. Since
ZN center symmetry is not broken by the θ -term, we can adopt the Polyakov loop as the order
parameter for deconfinement.
We performed simulations on four lattices (see below) to approach the continuum limit. On each
lattice we chose ∼ 4−6 values of θL and for each θL about 10 values of β close to the transition.
The critical couplings βc(θL) have been calculated by performing a Lorentzian fit to the data of
the Polyakov loop susceptibility. From βc(θL) we reconstruct Tc(θL)/Tc(0) = a(βc(0))/a(βc(θL))

by means of the non-perturbative determination of a(β ) reported in Ref. [21]. The location of Tc

is affected by finite size corrections, which however should be greatly reduced when computing
the ratio Tc(θL)/Tc(0). Finally, we converted θL into θI by exploiting the determination of the
renormalizaton Z(β ) at the critical coupling βc, which is obtained interpolating the data reported in
Ref. [2]. The curvature Rθ was determined on three different lattices, 163×4, 243×6 and 323×8.
Around the transition, they correspond to the same spatial volume in physical units and different
lattice spacings, a ' (4Tc)

−1,(6Tc)
−1 and (8Tc)

−1. Then, in Ref. [3], we performed simulations
on a finer lattice, 403× 10, always at the same physical volume and at a ' (10Tc)

−1. The full
set of results is reported in Table I of Ref. [3]. Assuming O(a2) corrections, our continuum limit
extrapolation for the curvature is Rθ = 0.0178(5).
Presently known techniques to circumvent the sign problem are only approximate and introduce
systematic errors. We employ reweighting as an alternative approach in order to compare two
independent methods and to cross-check the results. In this case the idea is to move the complex
phase factor of the path integral inside the observable O:

〈O〉θ =

∫
[dU ] e−SL[U ]+iθQ O∫
[dU ] e−SL[U ]+iθQ

=
〈eiθQO〉
〈cos(θQ)〉 . (2.4)

The averages without subscript are taken at θ = 0. We used the equality 〈eiθQ〉 = 〈cos(θQ)〉 which
comes from the Q→−Q symmetry of the topological charge distribution at θ = 0.
The severeness of the sign problem can be estimated by the average phase factor. When 〈cos(θQ)〉
vanishes unfeasibly large statistics would be needed to have reasonable statistical errors. QCD
at finite baryon density is affected by similar problems [22]. Reweighting in θ proved to require
larger statistics with respect to the imaginary θ approach. In particular, in order to be able to collect
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FIG. 6: Polyakov loop susceptibility as a function of β and
after reweighting at a few values of real θ. The shaded bands
correspond to data reweighted also in β.

lattice θ βc Tc(Q)/Tc

403 × 10 0.10 6.2081(4) 0.9999(8)

403 × 10 0.30 6.2068(4) 0.9979(8)
403 × 10 0.35 6.2062(5) 0.9970(8)
403 × 10 0.50 6.2040(6) 0.9937(11)
403 × 10 0.55 6.2033(7) 0.9927(12)

TABLE II: Results obtained for βc and Tc at real θ by the
reweighting technique on the 403 × 10 lattice. The ratios of
critical temperatures have been calculated using the θ = 0
critical β reported in Table I.

deconfined phase as θ2 increases; the quadratic behavior
in θ2 is consistent with analyticity around θ2 = 0 and
with the fact that 〈|L|〉 is a P -even quantity. We no-
tice that both features are consistent with the results of
Ref. [15].

Finally, in Fig. 6, we show results for the susceptibility
as a function of β, obtained after reweighting at θ = 0.3
and 0.5, together with the original data at θ = 0. It is
clear that the peak moves to lower values of β, i.e. to
lower temperatures, as θ increases, in agreement with re-
sults from analytic continuation. From the susceptibility
peaks we can extract the critical temperatures (see Ta-
ble II), and compare them with results at imaginary θ.
It does not make sense to fit reweighted data directly,
since they are obtained from the same data sample and
are therefore correlated; instead, in Fig. 7, we compare
reweighted data with the extrapolation linear in θ2 ob-
tained by fitting results at imaginary θ, showing that
there is indeed agreement, within statistical errors. That
gives further support to the validity of analytic continu-
ation, at least for small values of θ.
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FIG. 7: Critical temperature as a function of θ2: we report
the result of the linear fit in θ2 obtained from simulations at
θ2 < 0.

C. Deconfinement and the Polyakov loop at fixed
topological background.

The general expression for a reweighted observable,
Eq. (8), can be rewritten in the following form:

〈O〉θ =
1

〈cos(θQ)〉

∞∑

Q=−∞
eiθQ P(Q) 〈O〉Q (10)

where 〈·〉Q stands for the average in a given topological
sector and P(Q) is the topological charge distribution at
θ = 0. It shows that a non-trivial dependence on θ is pos-
sible only if the observable has a non-trivial dependence
on Q. This is quite natural, since θ and Q are conjugate
quantities, like the particle density and the chemical po-
tential.

The fact that, as we have shown, the location of de-
confinement moves as θ is changed, leads us to suspect
that the dependence of physical observables on Q may be
significant around Tc. Investigating such dependence is
quite important for various reasons, for instance to un-
derstand the possible systematic effects involved in nu-
merical simulations carried out in a fixed topological sec-
tor, like it happens when investigating QCD with over-
lap fermions. Studies regarding such effects have been
reported, both at zero and finite T [23–25]; in particular,
a recent study shows that systematic effects in the deter-
mination of the topological susceptibility at finite T are
well under control [25]. In the present subsection we will
discuss about the dependence on Q of quantities directly
related to deconfinement, in particular the Polyakov loop
and its susceptibility, showing that in this case system-
atic effects, even if disappearing in the thermodynamical
limit, can be more significant.

Such study is best performed on the finest lattice at
our disposal, i.e. the 403 × 10, where the determination
of the topological background is most reliable. For that

Figure 1: Left - The susceptibility of the Polyakov loop as a function of β at θ = 0 and at a few values of
real θ obtained via reweighting. The bands represents data reweighted also in β . Right - Critical temperature
ratio as a function of θ 2, both for real and imaginary θ . The linear fit in θ 2, only on the data at θ 2 < 0, is
reported as well.

a sufficiently large sample of measures, we need the determination of the topological charge to be
as cheap as possible. We used the cooling algorithm (see Ref. [12]) which provides reliable results
on fine enough lattices: that is why we applied the reweighting method only to the Nt = 10 lattice.
Q has been measured once every 10 cooling steps, up to a maximum of 40 steps. After having
checked that the four choices lead to compatible results, we chose to use the results for Q obtained
after ncool = 30 cooling sweeps.
We discuss now the behavior of observables computed at nonzero θ by reweighting, and make a
comparison with results from imaginary θ . We are interested in the modulus of the Polyakov loop,

〈|L|〉θ =
〈eiθQ|L|〉
〈eiθQ〉 =

〈cos(θQ)|L|〉
〈cos(θQ)〉 , (2.5)

and in its susceptibility, χL(θ) = Vs(〈|L|2〉θ − 〈|L|〉2θ ). The errors of χL and of the ratio of ex-
pectation values in Eq. (2.5) is computed via a jackknife algorithm. We have replaced also in the
numerator eiθQ with its real part, cos(θQ). This is reasonable because the path integral measure at
θ = 0 and L are invariant under parity transformations, under which instead Q→−Q.
In the left panel of Fig. 1, we show our results for the susceptibility as a function of β , obtained af-
ter reweighting at θ = 0.3 and 0.5, together with the original data at θ = 0. As θ increases the peak
shifts to lower values of β , i.e. to lower temperatures, in agreement with the analytic continuation
results. We extract from the susceptibility peaks the critical temperatures and compare them with
results at imaginary θ . In the right panel of Fig. 1, we compare reweighted data with the linear
extrapolation in θ 2, obtained by fitting results at imaginary θ . The agreement, within statistical
errors, supports the validity of analytic continuation.
It would be interesting in the future to compare with results obtained via Langevin dynamics [23].
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Figure 2: Left - Dependence of the modulus of the Polyakov loop on the topological sector Q. Simulations
were performed for a few values of T around the transition on the 403× 10 lattice. Right - Polyakov loop
susceptibility for sector Q = 0 and |Q|= 5 as a function of β .

3. Polyakov Loop at fixed topological background in SU(3)

The general expression for a reweighted observable, Eq. (2.4), can be rewritten in the form:

〈O〉θ =
1

〈cos(θQ)〉
∞

∑
Q=−∞

eiθQ P(Q)〈O〉Q (3.1)

where 〈·〉Q means the average in a fixed topological sector and P(Q) is the topological charge
distribution at θ = 0. Equation (3.1) shows that it is possible to have a non-trivial dependence on
θ only if the observable depends on Q. The fact that the position of the deconfinement transition
changes with θ suggests the physical observables to be Q dependent, especially around Tc. Inves-
tigating this kind of dependence is important to understand the possible systematic effects present
in numerical simulations at fixed topological sector, e.g. for QCD with overlap fermions. Studies
regarding these effects have been performed both at zero and finite T [24, 25, 26]; in particular,
Ref. [26] shows that systematic effects in the determination of the topological susceptibility at fi-
nite T are under control.
We performed this study at fixed topological background on the finest lattice at our disposal
(403× 10) because the determination of the topological charge is most reliable. We have divided
the configurations sampled at each β and at θ = 0 according to Q, which has been determined by
cooling, as discussed previously. We show, in the left panel of Fig. 2, the behavior of the Polyakov
loop as a function of Q for some temperatures around Tc

〈|L|〉|Q| =
∑

M
i=1 |L|i δ|Q|,|Qi|
∑

N
i=1 δ|Q|,|Qi|

, (3.2)

where M is the number of measures. In order to reduce statistical errors, we have combined ob-
servables in opposite topological sectors, using the symmetry of the Polyakov loop under P. As we
can see, the dependence on |Q| is quite mild below Tc, then it becomes stronger at the transition and
finally slightly milder above deconfinement. The average plaquette displays a similar behaviour,
but the relative variation between two different sectors is modest (never larger than 10−4). Also
the susceptibility of the Polyakov loop depends on Q: in the right panel of Fig. 2 it is plotted as a
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Figure 3: Left - Renormalization Z(β ) of the topological charge operator for SU(4) determined on a 164

lattice, together with a quadratic interpolation. Right - Critical temperature ratio for SU(4) on a 183× 6
lattice as a function of θ 2. The dashed line is the linear fit in θ 2.

function of β for Q = 0 and |Q|= 5. We learn that deconfinement can be influenced by the overall
topological background: the susceptibility peaks are shifting towards higher β (i.e. the critical
temperature increases) with |Q|. This in qualitative agreement with the imaginary θ simulations:
when θI 6= 0 the average value of the topological charge 〈Q〉θI becomes different from zero and Tc

tends to increase. The values of Tc(Q) that we obtained are reported in Table III of Ref. [3].

4. Preliminary results for SU(4)

Our determination of Rθ for SU(3) (Rθ = 0.0178(5)) is in rough agreement with the model
prediction of Ref. [2], Tc(θ)/Tc(0) = 1−θ 2∆χ/(2∆ε)+O(θ 4), which is based on the fact that the
transition is first order. ∆ε and ∆χ are respectively the jump of the energy density and the drop
of the topological susceptibility at the transition. In the large Nc limit, ∆χ tends to the topological
susceptibility χ computed at T = 0 and stays finite, while ∆ε ∝ N2

c , so that Rθ ∝ 1/N2
c . In particular

the model predicts Rθ = 0.0281(62) for Nc = 3 and Rθ = 0.0158(35) for Nc = 4.
It is then interesting to study on the lattice the large−Nc behaviour. We report here first results for
SU(4). In Figure 3 we show the multiplicative renormalization of the topological charge defined in
Eq. (2.2), computed on a 164 lattice as Z = 〈QQL〉/〈Q2〉. We determined the critical couplings βc

on a 183×6 lattice for several values of θI . The critical temperature ratios (Tc(θ)−Tc(0))/Tc(0)
shown in Fig. 3 were computed using the nonperturbative string tension determination for SU(4)
of Ref. [27]. Fitting these data with a linear behaviour in θ 2 we obtained the critical line curvature
Rθ (Nt = 6) = 0.0204(6). It the next future we will perform further simulations with other lattice
spacings in order to be able to compute the continuum limit extrapolated value of Rθ in the SU(4)
Yang-Mills theory and to check for the validity of the large Nc prediction.

Acknowledgements: we acknowledge the use of the computer facilities of the INFN-Genova Sec-
tion, of the CSNIV cluster in Pisa and of INFN Bari Computer Center for Science.
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