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We report a study of the dependence of 4D SU(N) gauge theories on the topologicalθ term at

finite temperature, and in particular in the large-N limit. We show that theθ dependence dras-

tically changes across the deconfinement transition. The low-temperature phase is characterized

by a large-N scaling withθ/N as relevant variable, while in the high-temperature phase the free

energy is essentially determined by the dilute instanton-gas approximation, with a simpleθ de-

pendence of the free-energy densityF(θ ,T)−F(0,T) ∼ 1−cosθ .
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4D SU(N) gauge theories have a nontrivial dependence on the topological θ term which can
be added to the standard Euclidean Lagrangian, i.e.

Lθ =
1
4

Fa
µν(x)Fa

µν(x)− iθq(x), q(x) ≡ g2

64π2 εµνρσFa
µν(x)Fa

ρσ (x), (1)

whereq(x) is the topological charge density. Theθ term is phenomenologically important, because
it breaks both parity and time reversal. Its experimental upper bound within the strong-interaction
theory is very small,|θ |< 10−9 [1]. Nevertheless, theθ dependence is an interesting physical issue,
relevant to hadron phenomenology, an example being the so-called U(1)A problem. Indeed, the
nontrivialθ dependence provides an explanation to the fact that the U(1)A symmetry of the classical
theory is not realized in the hadron spectrum [2, 3, 4]. Theθ dependence at finite temperature (T)
is related to the issue of the effective restoration of the U(1)A symmetry in strong interactions at
finite T, at highT and around the chiral transition, which may be also relevantto the nature of the
transition itself [5, 6].

We report a study [7] of theθ dependence of 4D SU(N) gauge theories at finiteT, in particular
across the deconfining temperatureTc. The finite-T behavior is specified by the free-energy density

F(θ ,T) = − 1
V

ln
∫

[dA]exp

(

−
∫ 1/T

0
dt

∫

d3xLθ

)

, (2)

whereV = V/T is the Euclidean space-time volume, and the gluon field satisfies Aµ(1/T,x) =

Aµ(0,x). Theθ dependence can be parameterized as

F (θ ,T) ≡ F(θ ,T)−F(0,T) =
1
2

χ(T)θ2s(θ ,T), (3)

whereχ(T) is the topological susceptibility atθ = 0,

χ =
∫

d4x〈q(x)q(0)〉θ=0 =
〈Q2〉θ=0

V
, (4)

ands(θ ,T) is a dimensionless even function ofθ such thats(0,T) = 1. Assuming analyticity at
θ = 0, s(θ ,T) can be expanded as

s(θ ,T) = 1+b2(T)θ2 +b4(T)θ4 + · · · , (5)

where only even powers ofθ appear.
At T = 0, where the free energy coincides with the ground-state energy, large-N scaling argu-

ments [2, 8, 9] applied to the Lagrangian (1) indicate that the relevant scaling variable is̄θ ≡ θ/N,
i.e. F (θ) ≈ N2G (θ̄ ) asN → ∞. Comparing with Eq. (3), this implies the large-N behavior

χ/σ2 = C∞ +O(N−2), b2 j = b̄2 j/N2 j +O(N−2 j−2), (6)

whereσ is the string tension,C∞ andb̄2 j are large-N constants. A nonzero value ofC∞ is essential
to provide an explanation to the U(1)A problem in the large-N limit [3, 4].

The large-N scaling (6) is not realized by the dilute instanton gas (DIG)approximation. In-
deed, atT = 0, instanton calculations fail due to the fact that large instantons are not suppressed.
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On the other hand, the temperature acts as an infrared regulator, so that the instanton-gas parti-
tion function is expected to provide an effective approximation of finite-T SU(N) gauge theories at
high T [10], high enough to make the overlap between instantons negligible. The correspondingθ
dependence is [10, 11]

F (θ ,T) ≡ F(θ ,T)−F(0,T) ≈ χ(T)(1−cosθ) , (7)

χ(T) ≈ T4 exp[−8π2/g2(T)] ∼ T− 11
3 N+4, (8)

using 8π2/g2(T) ≈ (11/3)N ln(T/Λ) + O(ln lnT/ ln2T). Therefore, the high-T θ dependence
substantially differs from that atT = 0 : the relevant variable for the instanton gas is justθ , and
not θ/N. The DIG approximation also shows thatχ(T), and therefore the instanton density, gets
exponentially suppressed in the large-N regime, thus suggesting a rapid decrease of the topological
activity with increasingN at highT. Since the instanton density gets rapidly suppressed in the
large-N limit, making the probability of instanton overlap negligible, the range of validity of the
DIG approximation is expected to rapidly extend toward smaller and smaller temperatures with
increasingN. An interesting question is how and when the DIG regime sets in.

In 4D SU(N) gauge theories the low-T and high-T phases are separated by a first-order decon-
finement transition which becomes stronger with increasingN [12], with Tc converging to a finite
large-N limit: [13] Tc/

√
σ = 0.545(2)+ O(N−2). This suggests that the change from the low-T

large-N scalingθ dependence to the high-T DIG θ dependence occurs around the deconfinement
transition. See, e.g., Refs. [14, 15, 16, 17] for further discussions of this scenario.

Due to the nonperturbative nature of the physics ofθ dependence, quantitative assessments
of this issue have largely focused on the lattice formulation of the SU(N) gauge theory, using
Monte Carlo (MC) simulations. However, the complex character of theθ term in the Euclidean
QCD Lagrangian prohibits a direct MC simulation atθ 6= 0. Information on theθ dependence of
physically relevant quantities, such as the ground state energy and the spectrum, can be obtained by
computing the coefficients of the corresponding expansion aroundθ = 0, which can be determined
by computing appropriate zero-momentum correlation functions of the topological charge density
at θ = 0 [18, 19]. For example,

χl =
〈Q2〉
V

, b2 = − 〈Q4〉−3〈Q2〉2

12〈Q2〉 , b4 =
〈Q6〉−15〈Q2〉〈Q4〉+30〈Q2〉3

360〈Q2〉 , (9)

whereQ is topological charge,χl is the the lattice topological susceptibility (χl ≈ a4χ ; a is the lat-
tice spacing). The coefficientsbi in Eq. (5) are dimensionless and renormalization-group invariant,
therefore they approach their continuum limit withO(a2) corrections.

We mention that issues related toθ dependence, particularly in the large-N limit, can also be
addressed by other approaches, such as AdS/CFT correspondence applied to nonsupersymmetric
and nonconformal theories, see e.g. Refs. [8, 17, 20, 21], and semiclassical approximation of
compactified gauge theories [22, 23].

The large-N scaling of theθ dependence is fully supported by numerical computations ex-
ploiting the nonperturbative Wilson lattice formulation of the 4D SU(N) gauge theory atT = 0,
see, e.g., the results reported in Table 1 forN = 3,4,6 (see also Refs. [9, 25] for recent reviews). A
large-N extrapolation of these data, usinga+b/N2 andb/N2 j for χ/σ2 andb2 j respectively, leads
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N χ/σ2 b2 b4

3 0.028(2) [9] −0.026(3) [24] 0.000(1) [24]
4 0.0257(10) [18] −0.013(7) [18]
6 0.0236(10) [18] −0.008(4) [7] 0.001(3) [7]

Table 1: Summary of knownT = 0 results for the ratioχ/σ2 (whereσ is theθ = 0 string tension) and the
first few coefficientsb2 j for N = 3,4,6. More complete reviews of results can be found in Refs. [9, 25]; in
particular other results forb2 at N = 3 are reported in Refs.[18, 26, 27].
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Figure 1: The ratio χ(T)/χ(0) between the topological susceptibility atT and zero temperature (left)
and the coefficientb2 of the free-energy expansion aroundθ = 0 (right), versus the reduced temperature
t ≡ T/Tc−1, around the deconfinement transition corresponding tot = 0. We show data for various values
of N and lattice sizesLt ×L3

s with Ls/Lt ≥ 4, whereLt , Ls are respectively the number of sites along thetime
andspacedirections. The shadowed regions in the right figure indicate theT = 0 estimates ofb2 for N = 3
andN = 6. The data forN = 4 of the left figure are taken from Ref. [15].

to the estimates

C∞ = lim
N→∞

χ/σ2 = 0.022(2), b̄2 = lim
N→∞

N2b2 = −0.23(2). (10)

This large-N scenario is expected to remain stable against sufficiently low temperatures.
The finite-T lattice investigations of the large-N behavior ofχ(T) [28, 15, 29, 30] indicate

a nonvanishing large-N limit for T < Tc, remaining substantially unchanged in the low-T phase,
from T = 0 up toTc. AcrossTc a sharp change is observed, andχ(T) appears largely suppressed
in the high-T phaseT > Tc, in qualitative agreement with a high-T scenario based on the DIG
approximation. Some MC data are shown in Fig. 1 (left panel).

A more stringent check of the actual scenario realized in 4D SU(N) gauge theories is provided
by the higher-order terms of the expansion (5). Indeed, the expansion coefficientsb2 j are expected
to scale likeN−2 j if the free energy is a function ofθ/N and to beN-independent in the DIG
approximation, or, more generally, if the relevant large-N scaling variable is justθ . In particular,
the simpleθ dependence of Eq. (7) may be observed at much smallerT aboveTc with respect to
the asymptotic one-loop behavior (8) ofχ(T) which is subject to logarithmic corrections.
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We computed the first few coefficients of the expansion (5) around Tc, for N = 3 andN = 6
to check theN dependence, using the lattice Wilson formulation of SU(N) gauge theories, and a
smearing technique to determine the topological charge. They require high-statistics simulations
due to the cancellation of volume factors in their definitions (9). For details see Ref. [7]. Fig. 1
(right panel) shows the data forb2. The MC results clearly show a change of regime in theθ
dependence, from a low-T phase where the susceptibility and the coefficients of theθ expansion
vary very little, to a high-T phase where the coefficientsb2 j approach the instanton-gas predictions.
In the high-T phase they are definitely not consistent with the large-N scaling in Eq. (6), which
would imply a factor of four inb2, in going fromN = 3 to N = 6. On the other hand, in the low-T
phaseb2 does not significantly differ from theT = 0 value. This is consistent with the behaviour
of the topological susceptibility, see the left panel of Fig. 1. Although our MC results in the high-T
phase are obtained for relatively small reduced temperaturest ≡ T/Tc−1, i.e. t < 0.2, the data for
b2 show a clear and rapid approach to the valueb2 = −1/12 of the instanton gas model for both
N = 3 andN = 6, with significant deviations visible only fort . 0.1. The high-T values ofb2

substantially differ from those of the low-T phase, and in particular from those atT = 0 reported
in Table 1. Also the estimates ofb4 are consistent with the small valueb4 = 1/360. The sharp
behavior of theθ dependence at the phase transition suggests thatTc is actually a function ofθ/N
at finiteθ , as put forward in Ref. [31].

A virial-like expansion can account for the deviations forb2, visible att . 0.1, by correcting
the asymptotic formula by a term proportional to the square of the instanton density. For example,
we may write

F (θ ,T) ≈ χ(1−cosθ)+ χ2κ(θ)+O(χ3), (11)

using the fact thatχ(T) is proportional to the instanton density, andκ(θ) can be parametrized as
κ(θ) = ∑k=2 c2k sin(θ/2)2k. The above formula givesb2 ≈ −1/12+ 1

8 c4χ/T4
c . This predicts a

rapid approach to the asymptotic value of the DIG approximation, sinceχ gets rapidly suppressed
in the high-T phase, as suggested by Eq. (8) and confirmed by the MC results.Moreover, a hard-
core approximation of the instanton interactions [11] gives rise to a negative correction, i.e.c4 < 0,
explaining the approach from below to the perfect instanton-gas valueb2 = −1/12.

This numerical analysis provides strong evidence that theθ dependence of 4D SU(N) gauge
theory experiences a drastic change across the deconfinement transition, from a low-T phase char-
acterized by a large-N scaling withθ/N as relevant variable, to a high-T phase where this scaling
is lost and the free energy is essentially determined by the DIG approximation, which implies an
analytic and periodicθ dependence. The corresponding crossover around the transition becomes
sharper with increasingN, suggesting that the DIG regime sets in just aboveTc at largeN.

In full QCD the θ dependence is closely related to the effective breaking of the U(1)A sym-
metry, through the axial anomaly which is proportional to the topological charge density, i.e.
∂µJµ

5 (x) ∝ 1
Nq(x) in the chiral limit. Its effects around the chiral transition may be relevant to

the nature of the transition itself. In the light-quark regime the nature of the finite-temperature tran-
sition is essentially related to the restoring of the chiralsymmetry, and the corresponding symmetry
breaking pattern [5]. In the relevant case of two light flavors, this is SU(2)L ⊗SU(2)R → SU(2)V ,
thus equivalent to O(4)→O(3). On the other hand, if the effects of the axial anomaly are effectively
suppressed at the transition, the relevant symmetry breaking is U(2)L ⊗U(2)R → U(2)V . This im-
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plies that, in the case of a continuous chiral transition (note however that the transition may be also
first order independently of the symmetry breaking), the critical behavior belongs to different 3D
universality classes in the two cases [32, 33].

Analogously to pure gauge theories, semiclassical instanton calculations predict a substantial
suppression of the instanton density at large temperatures, T ≫ Tc say, where the DIG model is
expected to provide a reliable approximation [10]. For example, in QCD with two light flavors
of massm, the topological susceptibilityχ is expected to asymptotically decrease asχ ∼ m2 T−κ ,
with κ = 11

3 N− 16
3 . Although χ vanishes in the massless limit, the Dirac zero modes associated

with the instantons induce a residual contribution to the U(1)A symmetry breaking, giving rise to a
difference between the susceptibilities of the so-calledπ andδ channels at highT, [34, 35] which
behaves asχπ − χδ ∼ T−κ in the chiral limit. Therefore, the DIG approximation suggests that the
U(1)A symmetry is not exactly recovered at finiteT, although its breaking gets largely suppressed
with increasing the temperature.

The breaking of the U(1)A symmetry at finite temperature has been much investigated, even
numerically by MC simulations of lattice QCD, see e.g. Refs.[34, 35, 36, 37, 38, 39, 40] and
references therein. These studies agree with a substantialsuppression of the U(1)A anomaly effects
at large temperature, as predicted by the DIG model. This scenario is strenghtened by our numerical
investigation of the pure SU(N) gauge theories. However, the issue about the significance ofthis
suppression around the chiral transition is still debated.

HP would like to thank the Research Promotion Foundation of Cyprus for support, and INFN,
Sezione di Pisa, for the kind hospitality.
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