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We investigate a way of circumventing the sign problem in lattice QCD simulations with a theta-

vacuum term, using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. We con-

sider the reweighting method for the QCD Lagrangian after theUA(1) transformation. In the

Lagrangian, theP-odd mass term as a cause of the sign problem is minimized. In order to find a

good reference system in the reweighting method, we estimate the average reweighting factor by

using the two-flavor PNJL model and eventually find a good reference system.
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1. Introduction

The existence of instanton solution requires QCD Lagrangian with the theta vacuum:

L = ∑
f

q̄f (γνDν +mf )qf +
1

4g2Fa
µνFa

µν − iθ
1

64π2 εµνσρFa
µνFa

σρ , (1.1)

in Euclidean spacetime. Hereafter, we will consider two-flavor QCD and assume isospin symme-
try, mu = md = m0. Though the angleθ can take any arbitrary value theoretically, experimental
measurements of neutron dipole moment give the upper limit,|θ |< 10−9[1]. Why shouldθ be so
small? This long-standing puzzle is called the strongCP problem.

Since the upper limit is determined only at zero temperature, the behavior is nontrivial for
finite temperature. Hence the first-principle lattice simulation is needed, but it has the sign problem
for finite θ . After makingUA(1) transformation,

q= eiγ5
θ
4 q′, (1.2)

θ dependence appears only through the mass term,

m0(θ) = m0cos(θ/2)+m0iγ5sin(θ/2), (1.3)

in the transformed Lagrangian,

L = ∑
f

q̄f (γνDν +m0(θ))qf +
1

4g2Fa
µνFa

µν . (1.4)

TheP-odd mass term includingiγ5 makes the fermion determinant complex.
Because of the sign problem, we should perform a reweighting method in lattice simulations.

The vacuum expectation value of operatorO is obtained by

⟨O⟩ =
∫

DAOdetM (θ)e−Sg (1.5)

=
∫

DAO ′detMref(θ)e−Sg (1.6)

with the gluon partSg of the QCD action and

O ′ ≡ R(θ)O, R(θ)≡ detM (θ)
detMref(θ)

, (1.7)

whereR(θ) is the reweighting factor and detMref(θ) is the fermion determinant of the reference
theory that has no sign problem. The simplest candidate of the reference theory is the theory in
which theθ -odd term is neglected in the mass term (1.3). We refer to this reference theory as
reference A in this paper. As discussed in Ref. [2], reference A may be a good reference theory for
small and intermediateθ , but not for largeθ nearπ. In reference A, the limit ofθ = π corresponds
to the chiral limit for detMref that is hard for LQCD simulations to reach.

The expectation value ofR(θ) in the reference theory is obtained by

⟨R(θ)⟩= Z
Zref

(1.8)
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whereZ (Zref) is the partition function of the original (reference) theory. The average reweighting
factor⟨R(θ)⟩ is a good index for the reference theory to be good; the reference theory is good when
⟨R(θ)⟩= 1.

In this work, we estimate⟨R(θ)⟩ with the two-flavor PNJL model in order to find a good
reference theory. We find that reference A is good only for smallθ , so propose a good reference
theory that satisfies⟨R(θ)⟩ ≈ 1. This work is based on the Ref. [3].

2. Model setting

The two-flavor PNJL Lagrangian with theθ -dependent anomaly term is obtained in Euclidean
spacetime by

L = q̄(γνDν +m0)q−G1

3

∑
a=0

[
(q̄τaq)2+(q̄iγ5τaq)2]

−8G2

[
eiθ detq̄RqL +e−iθ detq̄LqR

]
+U (T,Φ,Φ∗), (2.1)

whereDν = ∂ν − iδν4Aa
4/λa/2 with the Gell-Mann matricesλa. The current quark massm0 satisfies

m0 = mu = md, andτ0 andτa(a= 1,2,3) are the 2×2 unit and Pauli matrices in the flavor space,
respectively. The parameterG1 denotes the coupling constant of the scalar and pseudoscalar-type
four-quark interactions, whileG2 stands for that of the Kobayashi-Maskawa-’t Hooft determinant
interaction [4, 5] where the matrix indices run in the flavor space. The Polyakov-loopΦ and
its conjugateΦ∗ are determined in the Euclidean space byΦ = 1

3trc(L), Φ∗ = 1
3trc(L̄), where

L= exp(iA4/T) with A4/T = diag(φr ,φg,φb) in the Polyakov gauge. We use the Polyakov potential
U of Ref. [6]:

U = T4
[
−a(T)

2
Φ∗Φ+b(T) ln(1−6ΦΦ∗+4(Φ3+Φ∗3)−3(ΦΦ∗)2)

]
, (2.2)

a(T) = a0+a1

(T0

T

)
+a2

(T0

T

)2
, b(T) = b3

(T0

T

)3
. (2.3)

Under theUA(1) transformation (1.2), the Lagrangian density is then rewritten withq′ as

L = q̄′(γνDν +m0(θ))q′−G+

[
(q̄′q′)2+(q̄′iγ5⃗τq′)2]−G−

[
(q̄′⃗τq′)2+(q̄′iγ5q′)2]+U , (2.4)

whereG± = G1±G2.
Applying the saddle-point approximation to the path integral in the partition function, one can

get the average reweighting factor⟨R(θ)⟩,

⟨R(θ)⟩ ≈ RARB (2.5)

RA =

√
detHref

detH
, RB = e−βV(Ω−Ωref), (2.6)

whereβ = 1/T andΩ (Ωref) is the thermodynamic potential at the mean-field level in the original
(reference) theory [3]. H (Href) is the Hessian matrix in the original (reference) theory defined by
[7, 8]

Hi j =
∂ 2Ω

∂φ ′
i ∂φ ′

j
, {φ ′

i }= {σ ′,η ′, a⃗′, π⃗ ′}, (2.7)
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with the quark-condensates

σ ′ = ⟨q̄′q′⟩ , η ′ = ⟨q̄′iγ5q′⟩ , a⃗′ = ⟨q̄′⃗τq′⟩ , π⃗ ′ = ⟨q̄′iγ5⃗τq′⟩ . (2.8)

The four-dimensional volumeβV is obtained byβV = (Nx/Nτ)
3T−4 for theN3

x ×Nτ lattice. Here
we considerNx/Nτ = 4 as a typical example, following Refs. [7, 8].

We consider the following reference theory that has no sign problem:

Lref = q̄′(γνDν +mref(θ))q′−G+

[
(q̄′q′)2+(q̄′iγ5⃗τq′)2]−G−

[
(q̄′⃗τq′)2+(q̄′iγ5q′)2]+U . (2.9)

Heremref(θ) is θ -even mass defined below. We consider three examples asmref(θ).

3. Numerical results

If some reference system satisfies the condition⟨R(θ)⟩ ≈ 1, one can say that the reference
system is good. As a typical example of the condition, we consider the case of 0.5≲ ⟨R(θ)⟩ ≲ 2.
This condition seems to be the minimum requirement. The discussion made below is not changed
qualitatively, even if one takes a stronger condition.

The first example is reference A defined by

mref(θ) ≡ mA(θ)
= m0cos(θ/2). (3.1)

In this case, theP-odd mass is simply neglected from the original Lagrangian (2.4).
Figure1(a) showsθ dependence of⟨R(θ)⟩ atT = 100 MeV. The solid line stands for⟨R(θ)⟩,

while the dashed (dotted) line corresponds toRA (RB). This temperature is lower than the chiral
transition temperature in the original theory that is 212 MeV atθ = 0 and 204 MeV atθ = π. As
θ increases from zero,⟨R(θ)⟩ also increases and exceeds 2 atθ ≈ 1.2. Reference A is thus good
for θ ≲ 1.2.

Figure 1(b) showsθ dependence of pion mass̃Mπ at T = 100 MeV. SinceP symmetry is
broken at finiteθ , P-even modes andP-odd modes are mixed with each other for each meson.
Hence,M̃π is defined by the lowest pole mass of the inverse propagator in the isovector channel[3].
The solid (dashed) line denotes̃Mπ in the original (reference A) system. Atθ = π, M̃π is finite
in the original system, but zero in reference A. As a consequence of this property,RA and⟨R(θ)⟩
vanish atθ = π; see Fig.1(a). This indicates that reference A breaks down atθ = π.

The second example is reference B defined by

mref(θ) ≡ mB(θ)

= m0cos(θ/2)+
1
α
{m0sin(θ/2)}2 . (3.2)

In this case, we have added them2
0-order correction due to theP-odd quark mass. Hereα is a

parameter with mass dimension, so we simply chooseα = Mπ . The coefficient of the correction
term ism2

0/Mπ = 0.129 MeV.
The same analysis is made for reference B in Fig.2. M̃π in reference B well reproduces that

in the original theory for anyθ and⟨R⟩ satisfies the condition 0.5≲ R≲ 2 for all θ . SinceRH ∼ 1
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Figure 1: θ dependence of (a) the average reweighting factor and (b)M̃π at T = 100 MeV for the case of
reference A.
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Figure 2: θ dependence of (a) the average reweighting factor and (b)M̃π at T = 100 MeV for the case of
reference B.

in the most region ofθ , ⟨R(θ)⟩ is governed byRΩ. Aroundθ = π, RH becomes small but still has
a nonzero value becausẽMπ ̸= 0 even atθ = π in reference B. Therefore, the simple estimation for
mref(θ) (3.2) gives an available reference.

Finally we consider reference C. The pion massM̃π(θ) at finiteθ is estimated from the chiral
Lagrangian and 1/Nc analysis [9]:

M̃2
π(θ) =

|σ0|
f 2
π

[
m0|cos(θ/2)|+ m0M2

π
M2

η ′
sin2(θ/2)

]
. (3.3)

whereσ0 is the chiral condensate atT = θ = 0. Interpreting aθ dependent mass from this result,
reference C is defined by

mref(θ) ≡ mC(θ)

= m0cos(θ/2)+
m0M2

π
M2

η ′
sin2(θ/2). (3.4)
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Figure 3: θ dependence of (a) the average reweighting factor and (b)M̃π at T = 100 MeV for the case of
reference C.
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Figure 4: θ dependence of the average reweighting factor atT = 100 MeV for the case of reference C. Solid
and dashed lines correspond to the result with and without dynamical pion fluctuation, respectively.

This case also has them2
0-order correction, butα is different from reference B. The coefficient of

the correction term ism0M2
π/M2

η ′ = 0.114 MeV.
As shown in Fig.3(b), M̃π in reference C slightly underestimates that of the original theory at

small and intermediateθ . However, in Fig.3(a), ⟨R(θ)⟩ satisfies the condition 0.5≲ ⟨R(θ)⟩ ≲ 2
for all θ . Therefore we can think that reference C is a good reference system for anyθ .

Beyond the mean-field approximation, we estimate an effect of dynamical pion fluctuations
by modifying the thermodynamic potential to

Ω = ΩMF +ΩDF, (3.5)

whereΩMF is the thermodynamic potential with the mean-field level.ΩDF is the potential due to
dynamical pion fluctuations [8],

ΩDF = 3
∫

d3p
(2π)3T ln

(
1−e−βEπ

)
, (3.6)

whereEπ =
√

p⃗ 2+ M̃2
π .
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Figure4 showsθ dependence of⟨R(θ)⟩ atT = 100 MeV for the case of reference C. The solid
and dashed lines correspond to results with and without dynamical pion fluctuations, respectively.
The effect makes⟨R⟩ a little smaller, and hence the reference C becomes slightly worse. However,
the modification is small, indicating that⟨R⟩ is well evaluated by the mean-field approximation

4. Summary and discussion

We have investigated a way of circumventing the sign problem in LQCD simulations with
finite θ , using the PNJL model. We have considered the reweighting method for the transformed
Lagrangian (1.4). In the Lagrangian, the sign problem is minimized, since theP-odd mass is
much smaller thanΛQCD. Another key is which kind of reference system satisfies the condition
⟨R(θ)⟩ ≈ 1. We have then estimated⟨R(θ)⟩ by using the two-flavor PNJL model and have found
that reference C may be a good reference system in the reweighting method.

Since the present proposal is based on the model analysis, it is then not obvious whether
the proposal really works in lattice simulations. Therefore, the proposal should be directly tested
by lattice simulations. A similar test was made for two-flavor QCD with finite quark chemical
potential µ [10, 8] where lattice simulations have the sign problem. The average reweighting
factor, i.e., the average phase factor, was evaluated by lattice simulations atµ/T < 1 for T around
the critical temperature of the deconfinement transition [10]. The PNJL model well reproduces the
lattice result, when the dynamical correction due to mesonic fluctuations is made to the mean-field
model calculation [8]. It is thus interesting that the present proposal is directly tested by lattice
simulations.
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