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1. Introduction

Knowledge of the QCD phase structure is important in order to understand the physics of the
early Universe, structure of neutron stars, processes in heavy-ion collisions experiments, etc. To
study the QCD phase transition, non-perturbative treatment is necessary. Lattice QCD is the most
suitable way to solve QCD non-perturbatively. There is, however, sign problem at simulations with
finite chemical potential. Thus, it is important to understand the lower left corner of the Columbia
phase diagram plot at zero density which depicts the nature of the finite temperature phase transition
as a function of light u-d quark masses and strange quark mass before starting extensive studies at
finite chemical potential.

The results of previous studies for the region of first order phase transition at zero chemi-
cal potential are very contradict between staggered type and Wilson type fermions. All results
with staggered type fermions using the rooting of quark determinant and with different levels of
improvement are consistent with the physical point being in the crossover region [1, 2, 3, 4]. In
contrast, results with Wilson type fermions which used the simple Wilson action found that the
physical point exist in the first order phase transition region [5]. To clarify the issue, an indepen-
dent investigation which contains results taken to the continuum limit is needed.

2. Methods

In this work we perform simulations with Iwasaki gauge action [6] andNf = 3 dynamical fla-
vors of non-perturbativelyO(a)-improved Wilson fermion action [7] on lattices of temporal extent
Nt = 4,6 and determine the critical endpoint on the line ofms =mud, i.e., we perform simulations
with mass-degenerate sea quarks for all 3 flavors. Wilson type fermions have exact flavor sym-
metry, which we consider to be a big advantage over staggered fermions, as the finite temperature
phase transition largely depends on the flavor degrees of freedom. A disadvantage though is lack
of chiral symmetry.

We generate O(10,000 – 200,000) trajectories for each ensemble. AtNt = 4, we choose spatial
lattice sizeNl = 6,8,10 and cover the rangeκ = 0.143 – 0.144 atβ = 1.60, κ = 0.1405–0.142 at
β = 1.65,κ = 0.1375–0.1395 atβ = 1.70. At Nt = 6, we chooseNl = 10,12,16 and cover the range
κ = 0.1403 – 0.1405 atβ = 1.73,κ = 0.1395–0.1398 atβ = 1.75,κ = 0.1385–0.1392 atβ = 1.77.

We compute plaquette,P, gauge action density,sg, Polyakov loop,L, their susceptibility,χ ,
skewness,S, and kurtosis,K, defined respectively by

P=
1

6N3
l Nt

∑
µ<ν

1
3

ReTrW1×1
µν , (2.1)

sg = c0(1−P)+2c1(1−R) , R=
1

12N3
l Nt

∑
µ,ν

1
3

ReTrW1×2
µν , (2.2)

L =
1

N3
l

∑
x⃗

L(x⃗) , L(x⃗) =
1
3

Tr
Nt∏

x4=1

U4(x) , (2.3)

χ = V ⟨(O−⟨O⟩)2⟩ , S =
⟨(O−⟨O⟩)3⟩
⟨(O−⟨O⟩)2⟩3/2

, K =
⟨(O−⟨O⟩)4⟩−3(⟨(O−⟨O⟩)2⟩)2

⟨(O−⟨O⟩)2⟩2 , (2.4)
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whereWi× j
µν is i × j Wilson loop,c0 = 1−8c1, c1 = −0.331 andO is an observable. KurtosisK can

be written using Binder cumulant as,

K = B4−3, B4(O) =
⟨(O−⟨O⟩)4⟩
⟨(O−⟨O⟩)2⟩ , (2.5)

which is frequently used to determine the critical point. These quantities are often better than
the maximum point of susceptibility because finite size effects is much smaller. For example,
magnetization in the Ising model behaves like

M = N−β
′/ν

l fM(tN1/ν′

l ) (2.6)

with reduced temperature,t, and critical exponents,β′ andν′ in finite size systems. By using this
scaling function,B4(M) can be written as

B4(M) =
N−4β′/ν

l fM4(tN1/ν′

l )[
N−2β′/ν

l fM2(tN1/ν′

l )
]2 = fB(tN1/ν′

l ) . (2.7)

ThereforeK does not depend on volume at a second order phase transition point. At the first order
phase transition point, for large volumes,K reaches the minimum [8] according to

K = −2+
c

Nd
l

+O(1/N2d
l ) . (2.8)

In the case of crossover, there is no such formula. But we can expect that the distribution becomes
sharper, andK becomes larger, with increasing volume.

We use this property ofK to determine the critical endpoint. So our strategy is as follows.

• First we find the transition point by using a fit around the peak of susceptibilities at eachNl .

• Then we obtainK at the transition point,Kt, at eachNl .

• Finally we find the intersection point ofKt by fit with finite size scaling inspired ansatz [2]

f (β,Nl) = KE+aN1/ν
l (β−βE)+bN2/ν

l (β−βE)2 , (2.9)

whereKE, βE andν are the kurtosis,β at the critical endpoint, and the critical exponent, respectively.
It is expected that the critical endpoint ofNf = 3 (alsoNf = 2+1) QCD belongs the universality
class of the 3D Ising model [9]. ThereforeKE = −1.396 andν = 0.63 are the expected values.
However, we do not assume any value forKE andν in this study. We also compute pseudoscalar
and vector meson mass ratio at the transition point, (mPS/mV)t to obtain the ratio at the critical
endpoint, (mPS/mV)E, by interpolation.

3. Results

The range ofβ in this study is rather low as compared to usual zero temperature simulations. So
we first check that we are looking at real finite-temperature phase transition, and not a bulk (lattice
artifact) phase transition sinceκ in our simulation is slightly larger than the region confirmed to be
absent of the bulk phase transition in ref. [10] (κ ≲ 0.14). In Fig.1 we plot P both on 63×4 and
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Figure 1: P v.s. κ both on 63×4 and 63×12 atβ = 1.60.

β = 1.60,κ = 0.14345 on 103×4 β = 1.70,κ = 0.13860 on 103×4
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Figure 2: Representative case for history and histogram at first order phase transition point (left). Repre-
sentative case for history and histogram at crossover (right).

63×12 atβ = 1.60. We see there is finite temperature phase transition atκ ∼ 0.1435, and no bulk
phase transition at zero temperature simulation in this region.

Figure2 shows representative cases for time history and histogram at first order phase transi-
tion point and crossover point. We see a clear double peak distribution and a two state signal of low
and hight temperature phases for the case of first order phase transition. On the other hand, there is
no such behavior for the crossover case1.

In Figs.3–5 we present results for expectation value, susceptibility, skewness and kurtosis for
P andL, together with quadratic fitting results for susceptibility and kurtosis atNt = 4. We find that
the maximum location ofχ, the point whereS is zero near the transition point and the minimum
location ofK are almost on the same point. Atβ = 1.60, a dip ofK becomes sharper and deeper
for larger volumes. We observe that the minimum ofK becomes larger with increasing volume at
β = 1.65,1.70.

In Fig. 6 we plot Kt with fitting results of eq. (2.9) and (mPS/mV)t with linear fitting results.
To obtainβE, since we have three observables, we minimize the followingχ2

χ2 =
∑

O=P,L,sg

[KO(β,Nl)− fO(β,Nl)
δKO(β,Nl)

]2
, (3.1)

whereδKO(β,Nl) is the error ofKO(β,Nl). We obtainβE= 1.6274(30) atNt = 4 andβE= 1.7345(12)
at Nt = 6. For (mPS/mV)E, we fit data with linear function and obtain 0.7289(28) and 0.6653(20)

1To distinguish first order, second order and or crossover transition, one must compare kurtosis at different volumes.
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Figure 3: Expectation value, susceptibility, skewness and kurtosis (from top to bottom in panel) for pla-
quette (left) and Polyakov loop (right) atβ = 1.60 andNt = 4, together with quadratic fit for susceptibility
and kurtosis.
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Figure 4: Same as Fig.3, but atβ = 1.65.
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Figure 5: Same as Fig.3, but atβ = 1.70.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
3
8

The critical endpoint of the finite temperature phase transition Yoshifumi Nakamura

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

1.6 1.62 1.64 1.66 1.68 1.7 1.72

𝐾
𝑡

𝛽

𝑁𝑠 = 6, 𝑠𝑔
𝑁𝑠 = 8, 𝑠𝑔
𝑁𝑠 = 10, 𝑠𝑔
𝑁𝑠 = 6, 𝑃
𝑁𝑠 = 8, 𝑃
𝑁𝑠 = 10, 𝑃
𝑁𝑠 = 6, 𝐿
𝑁𝑠 = 8, 𝐿
𝑁𝑠 = 10, 𝐿

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

(𝑚
𝑃

𝑆⁄
𝑚

𝑉
) 𝑡

Figure 6: Kt v.s.β with fitting results of eq. (2.9) at Nt = 4

at Nt = 4 and 6, respectively. In Fig.7 we plot (mPS/mV)E as a function of 1/N2
t . The black points

indicate (mPS/mV) at the critical endpoint for eachNt. The blue diamond point indicates the flavor
SU(3) symmetric point defined bymq = (mphy

u +mphy
d +mphy

s )/3. The green triangle indicates the
point where all three quark masses are equal to the physical strange quark mass. We find that the
transition is first order for (mPS/mV) ≲ 0.7, is a crossover for (mPS/mV) ≳ 0.7 atNt = 4,6. We also
observe that (mPS/mV)E becomes smaller with increasingNt. Since there are only two points, we
need further investigation at largerNt to extrapolate to the continuum limit.

4. Summary

We have investigated the critical endpoint of QCD atµ = 0 with Nf = 3 degenerate dynamical
flavors of non-perturbativelyO(a)-improved Wilson fermions. We have determined the critical
endpoint by using the intersection points of kurtosis atNt = 4,6. We have found for these temporal
lattice sizes that, along the flavor symmetric line withms = mud, the critical end point is located
around the point where all three quark masses are equal to the physical strange quark mass. We are
extending our study to largerNt to obtain conclusive results in the continuum limit.
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