
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
4
4

Scale hierarchy in high-temperature QCD
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Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is
the reason for the transition to a deconfined phase in Yang-Mills theory at temperature Tc. At
high temperature T � Tc, the smallness of the running coupling g induces a hierachy betwen
the "hard", "soft" and "ultrasoft" energy scales T , gT and g2T . This hierarchy allows for a very
successful effective treatment where the "hard" and the "soft" modes are successively integrated
out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy.
By numerical simulations, we show that the required temperatures are extremely high. Thus, the
quantitative success of the effective theory down to temperatures of a few Tc appears surprising a
posteriori.
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1. Introduction

Because of asymptotic freedom, QCD at high temperature T is weakly coupled. At asymptot-
ically high T , the theory becomes free. The confining properties of QCD at low temperature give
way to deconfinement. Also, perturbation theory becomes a good approximation. The practical
issue is how good this approximation is as a function of T : since the coupling runs logarithmically
only, one may expect that really high temperatures are needed. Indeed, the perturbative calculation
of the QCD pressure p(T ) has represented a heroic effort, with initially rather poor convergence
properties. However, inclusion of the last perturbative term, and of the leading non-perturbative
effect with a fitted coefficient [1] results in a pressure close to available Monte Carlo data down to
T ∼ O(10Tc). A possible extension of the perturbative approach, to include the center degrees of
freedom responsible for the deconfinement transition [2], should extend this agreement down to a
few Tc. A similarly spectacular success has been obtained with the perturbative calculation of the
spatial string tension [3]: agreement with Monte Carlo data extends almost right down to Tc!

These extraordinary successes prompt us to examine the Debye mass, and compare perturba-
tive predictions with Monte Carlo data at very high temperature, in a regime where fairly good
agreement is expected, but where quantitatively unknown non-perturbative corrections should be
present and can be determined. From our study, one can estimate the temperature at which the
effective, perturbative description should become inaccurate, at least regarding the prediction of
the Debye mass.

We review the perturbative approach in Sec.II, the definition of the Debye mass in Sec.III, and
present our Monte Carlo results in Sec.IV.

2. Perturbative dimensional reduction

Let us briefly recall the steps of the perturbative approach. To implement a finite temperature
T , the Euclidean time direction is compactified, with extent 1/T . This renders the theory effectively
3-dimensional, for spatial distances much larger than 1/T or momenta |~k| � T . Moreover, the
boundary conditions in Euclidean time are periodic for bosonic, anti-periodic for fermionic fields,
such that a generic field φ admits a Fourier decomposition

φ̃n =
∫ 1/T

0
dt exp(i2π(n+q)t) φ(x, t), q = {0,1/2} (2.1)

with q = 0 for bosons, 1/2 for fermions. This implies a dispersion relation E2
n = |~k|2 +[2πT (n+

q)2 +m2] = |~k|2 +(m3d
eff)

2, so that fermions acquire an effective mass O(πT ) and decouple from
the infrared physics at spatial momenta |~k| � T . Bosons acquire an effective mass O(2πT ) and
also decouple, except for the static mode n = 0.

Applying this argument to QCD, one is left at high temperature with only the static modes
of the gauge fields: Āi ≡ Ai,n=0 and Ā0 ≡ A0,n=0 =

∫ 1/T
0 dt Aa

0(~x, t)τa. The latter is related to the
Polyakov loop L as L(~x) = exp(iĀ0(~x)).

An effective, 3-dimensional action can be written in terms of the above degrees of freedom,
based on the symmetries of the theory and on a gradient expansion:

S3d
eff =

∫
d3x [TrF̄2

i j +m2Ā2
0 +(DiĀ0)

2 +λ Ā4
0 + · · ·] (2.2)
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which is a 3d Yang-Mills theory coupled to an adjoint Higgs field. The couplings of this effective
action are determined in terms of the original 4d Yang-Mills coupling g(T ) by matching infrared
spatial correlators obtained by a perturbative expansion in the two theories. The tree-level result
is g3d

eff = g(T )
√

T . Note however that the 3d theory is non-perturbative in the infrared: 3d Wilson
loops obey an area law, and a 3d glueball spectrum exists. In fact, non-perturbative effects become
manifest in a perturbative expansion, at order g6(T ) for the pressure, and the mass scale for non-
perturbative excitations is g2(T )T [5].

Therefore, one encounters 3 different mass (or energy) scales:
• The “hard” scale 2πT
• The “soft” scale g(T )T
• The “ultra-soft” scale g2(T )T
These scales are associated with the non-static modes, the electric (Ā0) static modes, and the mag-
netic (Āi) static modes, respectively. At high temperatures, g(T ) becomes small and these 3 scales
are hierarchically separated. Then, it makes sense to integrate them out in succession:
• Integrating out the “hard” scale gives the effective 3d theory of eq.(2.2), which still contains the
static A0 mode and is therefore called “Electric QCD” (EQCD).
• Integrating out the “soft” scale of the Ā0 gives a simpler effective theory, “Magnetic QCD”
(MQCD), whose action is just the 3d Yang-Mills action, which describes the IR dynamics of
EQCD, and thus of QCD.
In principle, the effective EQCD and MQCD actions have infinitely many local and non-local terms.
The truncation to, say, the form eq.(2.2) is a good approximation provided that there is a scale
separation between the modes whose dynamics is preserved and those which are integrated out.
Such a hierarchy between hard, soft and ultrasoft scales requires a small value for the coupling g(T ).

Fig. 1 left shows the running coupling g(T ) in the renormalization scheme of Huang and
Lissia [6] (MSbar scheme with µ = 4πT exp(−γE−1/22)), popular in perturbative thermodynamic
studies, where the temperature has been determined from 2-loop running on an Nt = 3 lattice. The
running g(T ) is almost identical to the bare coupling g of the lattice action β = 2Nc/g2,Nc = 3, in
the regime where both are weak. Note the large values of the plaquette coupling β required.

3. Debye mass

Consider the free energy Fqq̄(r) of two static charges q, q̄ at distance r from each other, and
at finite temperature T . The two charges are introduced as Polyakov loop sources L(0) and L†(r).
Take the case of QED first. The two charges interact by exchanging an A0 photon. The free A0

propagator is modified by e+e− thermal pair creation, leading to a series ∑k O(e2)k diagrams which
can be resummed. As a result, the T = 0 Coulomb potential 1/r is modified at finite temperature
to a Yukawa form exp(−mDr)

r , with the Debye mass

mD =
eT√

3
(1+O(e2)) (3.1)

In QCD, the story is similar but more subtle. First, the qq̄ free energy is obtained from the correlator
〈TrL(0)TrL†(r)〉, where TrL is a color singlet. So, two gluons at least must be exchanged to make
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Figure 1: Left: Running coupling as a function of the lattice coupling β , for two schemes: the scheme of
Huang and Lissia [6], favored for finite temperature, and the lattice scheme. When the coupling is weak,
the scheme dependence is mild. Note the very large values of β needed to reach g� 1. Right: the 4-gluon
vertex couples the A0 gluons emitted by the static sources with spatial Ai gluons, themselves coupled to the
non-perturbative spatial glueball channel.

a singlet, making the screening mass 2mE . The Debye mass mE is, to lowest order (noted mD):

mD = gT

√
Nc

3
+

N f

6
(3.2)

for Nc colors and N f quark flavors. However, at higher order the 3- and 4-gluon vertices induce
a coupling of A0 to Ai, and thereby to the non-perturbative 3d glueball with mass mG ∼ O(g2T ).
This is illustrated Fig. 1 right. Therefore, Fqq̄(r) is expected to couple to both the Ā0 electric mode,
with screening mass O(gT ), and to the Āi magnetic mode, with screening mass O(g2T ) – plus the
non-static, “hard” modes with mass O(2πT ) at short distance. This made it difficult to even define
the QCD screening mass for some time.

This difficulty was resolved in [7]. The different modes behave differently under time-reversal
(called “R” symmetry in [7]), which changes A0 to −A0 and TrL to TrL†. MQCD, not containing
A0, is R-even. Thus, the scale g2T will be visible in R-even observables only, like ReTrL, and the
Debye mass can be defined non-perturbatively from the asymptotic behavior of the correlator of
the R-odd ImTrL.

Thus, we separate the Polyakov loop L into ReL ≡ L+L†

2 and ImL ≡ L−L†

2 , and measure the
zero-spatial-momentum connected correlators as a function of z:

〈[∑
xy

TrReL(x,y,0)][∑
xy

TrReL(x,y,z)]〉c −→ meff = {∼ 2πT, 2mE + corr., mG(0++)} (3.3)

〈[∑
xy

TrImL(x,y,0)][∑
xy

TrImL(x,y,z)]〉 −→ meff = {∼ 2πT, 3mE + corr.} (3.4)

The different effective masses meff are parametrically separated by powers of g(T ). The heavier
modes make a larger contribution to the correlator, but this contribution decays faster with z, leading
to the behaviour sketched Fig. 2 left panel at high temperature for the R-even correlator. These
expectations are fulfilled by our Monte-Carlo data (middle panel), which is well described by a
3-mass fit where the masses have the expected magnitude. In contrast, the R-odd correlator (right
panel) is well described by a 2-mass fit.
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Figure 2: Left: Schematic behaviour of the correlator C(z) of the real part of the trace of the Polyakov loop
(on a logarithmic scale) as a function of separation z: three distinct mass scales should be visible at high
enough temperature. Middle: Monte Carlo data for C(z) for SU(3) Yang-Mills theory, on a 242× 80× 3
lattice, at plaquette coupling β = 100, with a three-mass fit. Right: Data for the correlator of the imaginary
part of the Polyakov loop trace: it is well described by a two-mass fit only.

Therefore, we can determine by Monte-Carlo the masses O(gT ) appearing in the decay of
the R-even and R-odd correlators, and compare them with perturbative expectations. As explained
above, the masses are not simply mE because TrL is a color singlet. In fact, L = exp(iĀ0) ≈ 1+
iĀ0− 1

2 Ā2
0− i

6 Ā3
0 + · · ·, with TrĀ0 = 0, so that TrReL∼ Ā2

0 decays with mass 2mE , and TrImL∼ Ā3
0

with mass 3mE . Finally, the leading order perturbative result for mE , eq.(3.2), is modified by
higher order perturbative corrections, as well as non-perturbative ones. The latter have a known
form: 3g2

4π
(c log(g)+d) where only c =−1 for the R-even channel is known [8]. Given sufficiently

accurate Monte-Carlo data, we can determine these 3 unknown coefficients.

4. Monte Carlo results

We have measured Polyakov loop correlators eq.(3.4), for SU(3) Yang-Mills theory with Wil-
son action, on lattices of size 242×80×3, with plaquette coupling β ∈ [20..120], corresponding to
temperatures T ∈ [1010..1063]Tc, to make the running coupling small enough (see Fig. 1 left) and
ensure a hierarchy of scales. Additional runs have been performed with Nt = 2 lattices, to check
for discretization errors, and with spatial size Nx = Ny = 48, to check for finite-size effects.

To suppress the hard modes, we have applied up to 160 APE smearing steps (preserving lo-
cality in z), obtaining for each z a matrix of correlators, indexed by the smearing level. To improve
the accuracy on the screening masses, we have analyzed these matrices of correlators with the
generalized eigenvalue method of [9], where the effective mass approaches its asymptotic value
exponentially in z. Fig. 3 shows some illustrative results, for the generalized eigenvalues (left) and
the resulting effective masses (right): in the R-even channel, two clear mass plateaux (O(gT ) and
O(g2T )) are obtained from the generalized eigenvalue approach. Without smearing these plateaux
could not be determined with any confidence.

Our Debye mass measurements are presented in Fig. 4. The dimensionless ratio M/T is shown
as a function of the plaquette coupling β , for both R-even and R-odd channels and for Nt = 3
and 2 lattices. In these coordinates, the parametric dependence M ∼ gT becomes M/T ∼ β−1/2,
which is why we use logarithmic scales. Indeed, the data fall on nearly straight lines. A small
systematic deviation, similar for both channels, is visible between Nt = 3 and Nt = 2 data. This is
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Figure 3: Left: A clear separation of the masses is obtained by smearing and solving a generalized eigen-
value problem [9]. Right: Effective masses as a function of z, for the ReTrL channel without (in red) and
with smearing (in blue and purple): two light masses ≈ 2mE and mG are visible; data for the smeared ImTrL
correlator is shown in black (light mass ≈ 3mE ).

a discretization error, which is smaller for Nt = 3 and ∼ 25% there. Otherwise, the data are nicely
consistent with the perturbative plus non-perturbative contributions discussed Sec. 3. Our precision
allows to determine the unknown non-perturbative coefficients with reasonable accuracy.

This success should not prevent us from mentioning difficulties: some are technical, some fun-
damental. On the technical side, we have noticed that smearing of the links entering the Polyakov
loops does not conserve R-parity: our two observables ReL and ImL are no longer purely R-even
and R-odd, respectively. In practice however, allowing for mixing in our analysis produced entirely
consistent results. More seriously, we have had problems with the glueball mass, O(g2T ), which
governs the z-asymptotics of the R-even correlator. It has been determined in the 3d theory in [10].
In our (3+ 1)d setup, we find it a factor 2-3 lighter than expected. Its accurate determination is
challenging, because finite-size effects are significant, and because a noisy disconnected part must
be subtracted from the R-even correlator. Moreover, the glueball may mix with the x- or y-flux
states carried by the x- and y-oriented Polyakov loops, which have similar masses.

The fundamental difficulty is rather a puzzle. The horizontal line M/T = 1 in Fig. 4 is crossed
in the mid-range of the – very weak – couplings which we have considered. On the left side
of the figure, the Debye masses are close to πT , and cannot be cleanly separated from the hard
modes. Similarly, the glueball mass, which varies as 1/β , faster than the 1/

√
β of the Debye

mass, rapidly becomes heavier towards the left edge of the figure. In fact, when T ∼ 2Tc, the mass
hierarchy 2πT � mE � mG is inverted to mE ∼ 2πT < mG, as reported, e.g., in [11]. This should
make the predictions of perturbative EQCD grossly inaccurate at such temperatures, contrary to
empirical observations [3]. Our study validates the perturbative dimensional reduction approach at
temperatures circa 1010Tc and above. Its success at much smaller temperatures can be considered
a “lucky surprise”, lessening the appeal of a more elaborate treatment as in [2].
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Figure 4: Summary of our Monte Carlo measurements of Debye masses, in units of the temperature, as a
function of the plaquette coupling β , on Nt = 2 and Nt = 3 lattices. The masses ≈ 2mE (in red) and ≈ 3mE

(in blue) characterizing the decays of correlators of A2
0 and A3

0, respectively, are shown. The fits include
leading non-perturbative corrections to the perturbative prediction.
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