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1. Introduction

At high temperatures the dominant degrees of freedom of strongly interacting matter change
from hadrons to quarks and gluons. This transition can be studied using lattice gauge theory. There
are various results using different fermion regularizations.

Most of these results [1 – 4] use the computationally inexpensive staggered discretization
which also preserves a subset of the continuum chiral symmetry. Even though different staggered
results seem to be consistent one should not forget that all these worksuse the fourth root trick
to studyNf = 2+ 1 flavors of quarks. There are still some questions in the literature about the
correctness of this approach. Furthermore taste symmetry breaking may lead to large discretization
errors when using small quark masses, especially at low temperatures.

There are also several results using Wilson fermions [5 – 8]. Since Wilsonfermions break
chiral symmetry explicitly, one has to take very fine lattices to study chiral symmetry restoration at
finite temperature. Due to the scattering of the low lying eigenvalues of the Wilson–Dirac operator,
one needs large lattice volumes when going to small pion masses. There are also first results with
twisted mass fermions [9].

It seems logical to use chiral fermions to study chiral properties at finite temperature. Even
though chiral lattice fermions are computationally much more expensive than theother types of
discretization, there are results in the literature using domain wall fermions [10] as well as first at-
tempts with overlap fermions [11, 12]. While domain-wall fermions provide exact chiral symmetry
only for an infinite extent of the fifth dimension, the overlap formulation [13, 14] has the advantage
of exact symmetry on finite four dimensional lattices [15].

In this work we present results using two degenerate flavors of dynamical overlap fermions.
We use four different lattice resolutions, corresponding toNt = 6, 8, 10 and 12 temporal extents.
We determine the temperature dependence of the chiral condensate, the chiral susceptibility, the
isospin susceptibility and the Polyakov loop. The results are compared toNf = 2 staggered data at
the same pion mass.

2. Overlap action and simulation details

The possibility of using the Hybrid Monte Carlo algorithm (HMC) with overlap fermions was
first discussed in Reference [16]. The overlap operator was implemented with a multi-shift inverter
using the Zolotarev rational approximation [17]. It was observed that treating topology changes
requires special care during the HMC trajectories. One has to track the lowest lying eigenvalues of
the Wilson kernel of the overlap operator. This topic was studied in detail in References [18 – 20].

Reference [21] demonstrated that one can run simulations with a fixed topological charge in
several different sectors, and that it is possible to determine their relative weight. However, even
this approach requires a tracking of Wilson eigenvalues. In Reference[22] it was suggested that by
adding an extra heavy Wilson fermion to the action which decouples in the continuum limit, one
can disable topological sector changes and at the same time speed up the algorithm significantly. It
was also claimed that in the thermodynamic limit physics is independent of the global topology and
therefore this approach should give correct results. However, significant power-like finite volume
corrections are expected [23, 24]. Here we follow the same approach:We add an extra Wilson

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
6
3

QCD thermodynamics with dynamical overlap fermions Bálint C. Tóth

fermion to suppress low lying eigenvalues of the Wilson kernel and disable tunneling between
different topological sectors. As a further improvement we use smearingin the Wilson kernel. It
was observed in [25, 26] that smearing significantly improves the properties of the overlap operator.
Furthermore, since smearing decreases the eigenvalue density in the middle of the Wilson spectrum
it results in a significant speedup of the algorithm [26].

In the gauge sector we use a tree-level Symanzik improved gauge action. The massive overlap
operator can be written as

D =
(

m0−
m
2

)

(1+ γ5sgn(HW))+m , (2.1)

whereHW = γ5DW is the Hermitian Wilson operator with a negative mass parameter−m0 which is
supposed to be in the range−2<−m0 < 0 andm is the mass of the overlap quark. For the Wilson
kernel we use two steps of HEX smearing [27 – 29] with smearing parametersα1 = 0.72,α2 = 0.60
andα3 = 0.44. In order to setm0 we evaluated the Wilson kernel on quenched configurations with
the targeted lattice spacings and smearing parameters of this work and locatedthe point which is
in the middle between the physical modes and the first doublers. This resultedin m0 = 1.3. The
simulations are performed withNf = 2 flavors.

As suggested in [22] we add two irrelevant terms to the action to suppress loweigenvalues of
HW and fix topology, so that the complete action takes the form

SE = ∑
x
{ψ̄E(x)DW(−m0)ψE(x)+φ†(x)[DW(−m0)+ imBγ5τ3]φ(x)} . (2.2)

The first term is the action of two flavors of extra fermions with negative mass−m0. The sec-
ond term, including a two component bosonic field, is included to control the effect of the extra
fermions. The eigenvalues ofHW belowmB are most strongly suppressed. Since bothm0 andmB

are fixed in lattice units they correspond to infinitely large masses in the continuum limit and both
these terms decouple. For the bosonic mass we usemB = 0.54. Since our lattice action results in a
fixed topology we aimed at simulations with zero topological charge.

We use a HMC algorithm with the Hasenbusch trick [30], with an Omelyan integrator [31] and
with a Sexton–Weingarten multi-scale scheme for the different fields [32]. The latter ingredient
turned out to be rather advantageous; the extra Wilson fermion has to be integrated with a much
smaller stepsize than the much more expensive overlap fermion.

The first step of our analysis was to determine the line of constant physics (LCP) and the scale.
The lattice sizes used for this purpose were 123×24 for couplings between 3.6 and 3.9, 163×32
for β values 4.0 and 4.1, and 324 for β values 4.2 and 4.3, with initial guesses for the bare quark
masses between 0.015 and 0.06. We determined thew0 scale [33] as well as the pion masses on all
of these lattices. Since due to the chiral symmetry of overlap fermionsm2

π ∝ m and the scalew0 is
quite insensitive to the quark mass, it was possible to tune the quark masses to have a fixed value
of mπ ·w0 = 0.312 for each beta without further simulations. With the physical value ofw0 at the
Nf = 2+1 flavor physical point,w0 = 0.1755 fm, this corresponds tomπ = 350 MeV. The lattice
spacing as a function ofβ and the LCP are shown in Figure 1. In one of our runs we had a (large)
nonzero topological charge,Q= 20. One can see from the figure that both the scale and the LCP
have still a significant dependence on topology for our volumes. Accordingly, this Q= 20 run is
left out in the final analysis.
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Figure 1: Left: The lattice spacing as a function of the coupling. The open box shows a run with a topolog-
ical charge ofQ= 20 (not included in the fit). Right: The tuned bare quark massm as a function ofβ .

For the finite temperature calculations the aspect ratio was set toNs/Nt = 2, that is, the spatial
extent was twice the size of the temporal extent. As a consequencemπ ·L lies between 3.5 and 5
for all simulations in the transition regime.

3. Results

The first quantity we study is thechiral condensate, ψ̄ψ = (T/V)∂/∂mlogZ. This can be
renormalized using the zero temperature condensateψ̄ψ0 (this observable was studied in [34])

mRψ̄ψR/m4
π = m(ψ̄ψ − ψ̄ψ0)/m4

π (3.1)

and the renormalized condensate is plotted in the first panel of Figure 2 together with our staggered
continuum estimate. One observes a broad cross-over, similar to the staggered results at physical
quark masses [35].

We have also determined thechiral susceptibility

χψ̄ψ = (T/V)∂ 2/∂m2 logZ (3.2)

but at the present level of statistics the necessary renormalization step results in large errors. There-
fore we only show the bare susceptibilities in the second panel of Figure 2.

The next quantity we study is thePolyakov loop. The bare Polyakov loop has a multiplica-
tive divergence of the form exp[F0(β )/T] where the divergent termF0 can be determined up to a
constant [36]. Different constants correspond to different renormalization schemes. We determine
F0 entirely from finite temperature simulations in the following way. We perform runs with nine
differentNt values,Nt = 4,5,6,7,8,9,10,11,12; the lattice extents are 163×Nt . We choose a fixed
physical temperature such that theseNt values span ourβ range. This corresponds to a temperature
of 208 MeV (havingNt = 9 atβ = 4.1). From these runs we can determineF0(β ) = 1/Nt · logL at
nineβ values. This can then be extended by interpolation to all of our couplings. This renormal-
ization scheme corresponds to the conditionLR(T = 208MeV) = 1. The renormalized Polyakov
loop is then given as

LR = L0e−Nt ·F0(β ), (3.3)
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Figure 2: The renormalized chiral condensate (top left panel), bare chiral susceptibility (top right panel),
renormalized Polyakov loop (bottom left panel) and the isospin susceptibility normalized by the respective
Stefan–Boltzmann limits (bottom right panel) as a functionof the temperature. The physical temperature
scale (at the top boundary) is for illustration only and it isbased onw0 = 0.1755 fm [33]. The gray band
indicates our staggered continuum estimate based onNt = 6,8,10 simulations.

whereL0 is the bare Polyakov loop. The result is shown in the third panel of Figure 2, where
our renormalization conditionLR(T = 208MeV) = 1 is represented by a black circle. We can see
almost no lattice spacing dependence and an excellent agreement with the staggered results.

Our final observable is theisospin susceptibility,

χI = (T/V)∂ 2/∂ µ2
I logZ

∣

∣

µI=0 , (3.4)

whereµI is the isospin chemical potential, i.e. the quark chemical potentials areµu,d = ±µI/2.
Obtaining results at non-vanishing chemical potentials is very CPU demanding(see e.g. [37 – 39]).
Even though a detailed analysis toµ > 0 is beyond the scope of this work, including the chem-
ical potential on the level of eq. (3.4) is quite interesting. The reason is thatthere is an ongoing
discussion in the literature about the proper inclusion of the chemical potential in the overlap op-
erator [40 – 42]. We follow Reference [40] and define the chemical potential as a fourth, imagi-
nary component of the temporal gauge field and use the analytic continuationof the sign function
sgn(z) = sgnRe(z). The second derivative can be calculated using the formulas of [12]. As a
tree level improvement we normalize all susceptibilities with the corresponding Stefan–Boltzmann
values. Our results for the isospin susceptibility are shown in the last panelof Figure 2.

4. Summary

We presented results for the temperature dependence of several observables using two degen-
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erate flavors of dynamical overlap fermions with a pion mass ofmπ = 350MeV. We have used
four different lattice spacings, corresponding toNt = 6, 8, 10 and 12. The errorbars on the finer
lattices are still large, but at the current level of statistical precision we found no contradiction with
the staggered results.
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