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We investigate chemical-potential (µ) dependence of static-quark free energies in both the real
and imaginary µ regions, using the clover-improved two-flavor Wilson fermion action and the
renormalization-group improved Iwasaki gauge action. Static-quark potentials are evaluated from
the Polyakov-loop correlator in the deconfinement phase and the imaginary µ = iµI region and
extrapolated to the real µ region with analytic continuation. As the analytic continuation, the
potential calculated at imaginary µ = iµI is expanded into a Taylor-expansion series of iµI/T up
to 4th order and the pure imaginary variable iµI/T is replaced by the real one µR/T . At real µ , the
4th-order term weakens µ dependence of the potential sizably. Also, the color-Debye screening
mass is extracted from the color-singlet potential at imaginary µ , and the mass is extrapolated
to real µ by analytic continuation. The screening mass thus obtained has stronger µ dependence
than the prediction of the leading-order thermal perturbation theory at both real and imaginary µ .
This talk is based on [1].
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1. Introduction

The free energies between two static quarks are fundamental quantities to understand inter-
quark interactions. Particularly above Tpc, the static-quark potentials determined from the free
energies characterize quark-gluon dynamics in QGP; for example, the inverse of the range of the
color-singlet potential is the color-Debye screening mass. The potential largely affects the behav-
ior of heavy-quark bound states such as J/Ψ and ϒ in QGP created at the center of heavy-ion
collisions [2]. In lattice QCD(LQCD) simulations, the static-quark potential is determined from
the Polyakov-loop correlation function. For zero chemical potential, T dependence of the static-
quark potential was investigated by quenched QCD [3, 4, 5] and full QCD with staggered-type [6]
and Wilson-type quark actions [7, 8, 9]. For small µ/T , it was analyzed by the Taylor-expansion
method with staggered-type [10] and Wilson-type quark actions [11]. In the analysis [11], the ex-
pansion coefficients are taken up to 2nd order of µ/T .

In this report, we present µ dependence of the static-quark free energies and the color-Debye
screening mass in both the imaginary and real µ regions, performing LQCD simulations at imag-
inary µ and extrapolating the result to the real µ = µR region with analytic continuation. We
consider two temperatures above Tpc, i.e., T/Tpc = 1.20 and 1.35. Following the previous LQCD
simulation [11] at small µ/T , we compute static-quark free energies along the line of constant
physics at mPS/mV = 0.80. As the analytic continuation, the static-quark potential at imaginary
µ = iµI is expanded into a Taylor-expansion series of iµI/T and pure imaginary variable iµI/T is
replaced by real one µR/T . In the present work the Taylor-expansion coefficients of the static-quark
potential are evaluated up to 4th order, whereas the coefficients were computed up to 2nd order in
Ref. [11]. It is found that the 4th-order term yields non-negligible contributions to µ dependence
of the static-quark potentials at real µ . At long distance, all of the color singlet and non-singlet
potentials tend to twice the single-quark free energy, indicating that the interactions between heavy
quarks are fully color-screened. Although this property is known for finite T and zero µ [8], the
present work shows that the property persists also for imaginary µ . For imaginary µ , the color-
singlet qq̄ and the color-antitriplet qq interaction are attractive, whereas the color-octet qq̄ and the
color-sextet qq interaction are repulsive. The color-Debye screening mass at imaginary µ is ex-
tracted from the color-singlet potential there. The mass at real µ is extrapolated from the mass
at imaginary µ by analytic continuation, i.e., by expanding the mass at imaginary µ into a power
series of iµI/T up to 2nd order and replacing iµI by µR. The (µ/T ) dependence of the screening
mass is found to be stronger than the prediction of the leading-order thermal perturbation theory.

2. Static-quark free energies

The Polyakov loop is defined as

L(xxx) =
Nt

∏
t=1

U4(xxx, t) (2.1)

with link variables Uµ ∈ SU(3). At imaginary µ , the ensemble average of the Polyakov loop
becomes a complex number, 〈TrL(0)〉 ≡ Φeiθ . The modulus is related to the single-quark free
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energy Fq as Φ = exp[−Fq/T ]. After an appropriate gauge fixing, one can derive the static-quark
free energies (potentials)VM of color channel M from the Polyakov-loop correlator [12, 13]:

e−V1(r,T,µ)/T =
1
3
〈TrL†(xxx)L(yyy)〉, (2.2)

e−V8(r,T,µ)/T =
1
8
〈TrL†(xxx)TrL(yyy)〉− 1

24
〈TrL†(xxx)L(yyy)〉, (2.3)

e−V3∗ (r,T,µ)/T =
1
6
〈TrL(xxx)TrL(yyy)〉− 1

6
〈TrL(xxx)L(yyy)〉, (2.4)

e−V6(r,T,µ)/T =
1

12
〈TrL(xxx)TrL(yyy)〉+ 1

12
〈TrL(xxx)L(yyy)〉, (2.5)

where r = |xxx−yyy| and the subscripts M = (1,8,3∗,6) mean the color-singlet, -octet, -antitriplet and
-sextet channels, respectively. We adopt the Coulomb gauge fixing.

In general, the VM (M = 1,8,3∗,6) are complex at finite imaginary µ . The real part of VM is
C -even and the imaginary part is C -odd. This can be easily understood by expanding VM into a
power series of iµI/T :

VM(r,T,µI)
T

= v0(r)+ iv1(r)
(µI

T

)
+ v2(r)

(µI

T

)2
+ iv3(r)

(µI

T

)3
+ v4(r)

(µI

T

)4
, (2.6)

where we consider terms up to 4th order. The potential VM at real µ is obtained from that at
imaginary µ by analytic continuation, i.e., by replacing iµI/T by µR/T :

VM(r,T,µR)
T

= v0(r)+ v1(r)
(µR

T

)
− v2(r)

(µR

T

)2
− v3(r)

(µR

T

)3
+ v4(r)

(µR

T

)4
. (2.7)

The WHOT-QCD Collaboration calculated the Taylor-expansion coefficients of VM up to 2nd order
by using the Taylor-expansion method and the reweighting technique with the Gaussian approx-
imation for the distribution of the complex phase of the quark determinant [11]. In this work,
meanwhile, we obtain the coefficients up to 4th order from VM at imaginary µ by expanding it as
in (2.6).

3. Results of the lattice simulations and the analytic continuation

We employ the clover-improved two-flavor Wilson fermion action and the renormalization-
group improved Iwasaki gauge action. Finite temperature simulations are performed on 163 × 4
lattices along the line of constant physics with mPS/mV = 0.80. We consider two temperatures
T/Tpc = 1.20 and 1.35. We generated 16,000 trajectories and removed the first 1,000 trajectories
as thermalization for all the parameter set. We measured the static-quark potential at every 100
trajectories.

The coefficients v2(r) and v4(r) of V1(r) are shown in Fig. 1. The ratio v4(r)/v2(r) is about
3/4 for T/Tpc = 1.20 and about 1/4 for T/Tpc = 1.35. Thus the contribution of v4(r) to V1(r) is
significant near Tpc such as T/Tpc = 1.20. Even at higher T such as T/Tpc = 1.35, the contribution
is not negligible.

Figure 2 shows the color-singlet potential at imaginary and real µ for (a) T/Tpc = 1.20 and
(b) T/Tpc = 1.35. The chemical potential is varied from (µ/T )2 = −1.0 to 1.0. The potential V1

is C -even, so that v1(r) = v3(r) = 0. Furthermore, if v4(r) = 0, the potential V1/T will linearly
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Figure 1: Taylor-expansion coefficients, v2(r) and v4(r), of V1(r) at (a) T/Tpc = 1.20 and (b) T/Tpc = 1.35.

depend on (µ/T )2. For T/Tpc = 1.20, v4(r) is comparable to v2(r). For this property, in panel (a)
of Fig. 2, µ/T dependence of V1/T is much weaker at real µ than at imaginary µ . In panel (b) of
T/Tpc = 1.35, v4(r) is still non-negligible compared with v2(r), so that V1/T has still weaker µ/T
dependence at real µ than at imaginary µ .
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Figure 2: µ/T dependence of the color-singlet qq̄ potential for (a) T/Tpc = 1.20 and (b) T/Tpc = 1.35.

For the case of T > Tpc and µ = 0, the potentials VM(r) are known to tend to twice the single-
quark free energy 2Fq in the limit of large r [8]. This behavior persists also for imaginary µ .
The interactions between heavy quarks are thus color screened also for imaginary µ . Following
the previous works [8, 4, 5, 9, 11], we then subtract 2Fq from VM(r). The subtracted static-quark
potentials are shown in Fig. 3(a) for the color-singlet and -octet channels and in Fig. 3(b) for
the color-antitriplet and -sextet channels. Needless to say, the physical interpretation of gauge
dependent quantities is not straightforward; this is the case also for the potentials. See ref. [14]. Our
results show distinctively different behaviors for the singlet/antitriplet channel and the octet/sextet
channel; the former is "attractive" and the latter is "repulsive". The attractive interactions have
strong µI/T dependence, but the repulsive interactions have weak µI/T dependence.
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Figure 3: µI/T dependence of the subtracted qq̄ in (a) the color-singlet and -octet channels and qq potentials
in (b) the color-antitriplet and -sextet channels at T/Tpc = 1.20.

4. Color-Debye screening mass

In order to analyze the color screening effect, we fit the static-quark potential to the screened
Coulomb form

VM(r,T,µ) = CM
αeff(T,µ)

r
e−mD(T,µ)r, (4.1)

where CM ≡ 〈∑8
a=1 ta

1 · ta
2〉M , αeff and mD(T,µ) are the Casimir factor, the effective running cou-

pling and the color-Debye screening mass, respectively. Here, we focus our discussion on the
color-singlet channel that is most important in the real world, and the Casimir factor in the singlet
channel is C1 = −4/3. Since V1 = 0 in the limit of large r in (4.1), we extract the screening mass
from the subtracted static-quark potential. Following the previous work [9], we choose a fit range
of

√
11 ≤ r/a ≤ 6.0.
In the leading-order (LO) hard thermal loop (HTL) perturbation theory, the color-Debye screen-

ing mass is obtained [15] by

mD(T,µ)
T

= g2l(ν)

√(
1+

N f

6

)
+

N f

2π2

(µ
T

)2
(4.2)

with the 2-loop running coupling g2l given by

g−2
2l (ν) = β0 ln

( ν
Λ

)2
+

β1

β0
ln ln

( ν
Λ

)2
, (4.3)

where the argument in the logarithms is rewritten into ν/Λ = (ν/T )(T/Tpc)(Tpc/Λ) with Λ =
ΛN f =2

M̄S ' 261 MeV [16] and Tpc ' 171 MeV [17], and the renormalization point ν is assumed to be
ν =

√
(πT )2 + µ2 [18].

Figure 4 shows the (µ/T )2 dependence of the color-Debye screening mass for (a) T/Tpc =
1.20 and (b) T/Tpc = 1.35. The lattice-simulation results are plotted by the cross symbols. The
screening mass is then expanded up to 2nd order of µ/T :

mD

T
= a0(T )+a2(T )

(µ
T

)2
, (4.4)
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where note that mD is C -even and hence it has no linear term of µ/T . The screening mass at real
µ is extrapolated from that at imaginary µ by using (4.4).

The results of the extrapolation, represented by the hatching area, are consistent with the
previous LQCD result, denoted by a circle symbol, at µ = 0 [9] for both cases of T/Tpc = 1.20
and 1.35. Comparing the hatching area (the result of the extrapolation) with the solid line (the
prediction of the leading-order thermal perturbation theory), one can see that the present LQCD
results show stronger µ/T dependence than the prediction of the perturbation theory.

 0

 2

 4

 6

 8

 10

-1 -0.5  0  0.5  1

m
D

/T

(µ/T)2

(a) χ2 fitting data
lattice data

Maezawa, et al.(2007)
perturbation theory

 0

 2

 4

 6

 8

 10

-1 -0.5  0  0.5  1
m

D
/T

(µ/T)2

(b) χ2 fitting data
lattice data

Maezawa, et al.(2007)
perturbation theory

Figure 4: (µ/T )2 dependence of the color-Debye screening mass for (a) T/Tpc = 1.20 and (b) 1.35. The
screening mass is determined from the singlet potential. Crosses with error bars denote results of the present
lattice simulations at imaginary µ , while a circle with an error bar is a result of the previous lattice simula-
tions at µ = 0 [9].

5. Summary

We have investigated µ dependence of the static-quark potential and the color-Debye screening
mass in both the imaginary and real µ regions, performing LQCD simulations at imaginary µ
and extrapolating the result to the real µ region with analytic continuation. LQCD calculations
are done on a 163 × 4 lattice with the clover-improved two-flavor Wilson fermion action and the
renormalization-group improved Iwasaki gauge action. We took an intermediate quark mass and
considered two cases of T/Tpc = 1.20 and 1.35.

The static-quark potential at real µ was obtained by expanding the potential at imaginary µ
into a Taylor-expansion series of iµI/T up to 4th order and replacing iµI to µR. Since the expansion
series was taken only up to 2nd order in the previous analysis [11], this is the first analysis that
investigates contributions of the 4th-order term to the potential. We found that at real µ the 4th-
order term weakens µ dependence of the potential sizably. This effect becomes more significant
as T decreases toward Tpc. We have also investigated color-channel dependence of the static-quark
potentials. At large distance, all the potentials tend to twice the single-quark free energy, indicating
that the interactions are fully color screened. Although this property is known for finite T and zero
µ [8], the present analysis shows that the property persists also for imaginary µ . For imaginary µ ,
the color-singlet qq̄ and the color-antitriplet qq interaction are attractive, whereas the color-octet
qq̄ and the color-sextet qq interaction are repulsive.
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The color-Debye screening mass is evaluated from the color-singlet potential at imaginary µ .
The screening mass thus obtained at imaginary µ is extrapolated to real µ by expanding the mass
at imaginary µ into a power series of iµI/T up to 2nd order and replacing iµI/T by µR/T . The
resulting mass has stronger µ dependence at both imaginary and real µ than the prediction of the
leading-order thermal perturbation theory.
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