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1. Introduction

In 1986 Matsui and Satz detailed in their seminal paper Bgy suppression could act as
a signal for quark-gluon plasma (QGP) formation in heavy ion collisions [Mfjere is now a
significant body of experimental evidence foiy suppression and the potential picture provides an
explanatory mechanism for this observation [2]. Quarkonium supiprelas also been observed in
bottomonium states [3]. Sequential suppression of heavy quarkonites bt@s been suggested as
a means to gauge the temperature produced in heavy ion collisions. The motigatalculating
the charmonium potential, especially from first principles, therefore liesindpacity for accurate
heavy quarkonium potentials to become valuable QGP diagnostic aids.

In this work the HAL QCDtime-dependenmnethod, described in Section 2, was used to calcu-
late the charmonium potential [4]. This method was used in [5] but is distioct the HAL QCD
fitting method used in [6, 7, 8]. In the HAL QCD fitting method, local-extended ¢atoes are fit-
ted to exponentials at large Euclidean timgto extract the Nambu-Bethe-Salpeter (NBS) ground
state wavefunction. The NBS wavefunction is then used, in conjunction vét8¢hrodinger equa-
tion, to reverse-engineer the potential. The HAL QCD fitting method is undetsi@ll from a
theoretical point of view since it relies on conventional fitting techniquesweéver, at non-zero
temperature it suffers from familiar limitations — higher excited states still con&itauthe corre-
lator at the largest available making fits unreliable.

The time-dependent method provides a means to extract the potential frafvekbended
correlators at moderateand higher temperatures, as described in the following section.

2. HAL QCD Time-Dependent Approach

The HAL QCD time-dependent approach takes local-extended corekganput. Formally,
these are constructed from charmonium interpolators,

Jr (1) =c(X)IU (X,X+r)c(X+r), (2.1)
wherec(x) andc(x) are fermion fields[” is a monomial of gamma matrices dddx, X) is the prod-
uct of gauge links which ensures the interpolator’s gauge invariar@lotal-extended correlator
can then be expressed as,

Cr(r, 1) = 5 (3r(x,1:1)31(0;0)). (2.2)

X

The local-extended correlator can also be expressed as a sum oegyahstates of the Hamilto-
nian, E;j,

YrOyi(r) /e, —E;(N;—T)
g - ] | T
Cr(r,1) Z 2, <e +e ) , (2.3)
where they's are the NBS wavefunctions at the source and sink. The first step @ngider only
the forward-moving contribution to the correlator (the effect of leavingtloe backward mover is
discussed later),

Cr(r,7) = Z (’UJ(Z)l‘f]J( e EiT z 7EJT’ (2.4)

J J
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where they;(0) and ZE; have been absorbed in¥;(r) since they are constant for each excited
state. The next step is to differentiate both sides vr.r.t.
J

Then, assuming charm quarks are heavy enough to be treated norstidally the Schrodinger
equation is applied t&;(r),

2
<_2Du +Vr(r)> Wi(r) = EWi(r). (2.6)

The reduced mass of the charmonium system is defined be%mc = %Mj/w, wherem is the
charm mass, anlll;, is the vector channel mass. Using (2.6) in (2.5) we obtain,

2 2
;TCr(r,r) =5 <2Du —Vr(r)> Wi(r)e BT = (25” —Vr(r)> Cr(r,1). (2.7)

]
Finally, this can be rearranged to yield the potential,

~ (D02%Cr(r,T)  OCr(r,1) 1
Vr(r)_( 2u 0t )Cr(r,r)' (2:8)

The application of (2.8) has the advantage that the correlators can dalwsetly to calculate
the potential, as opposed to having to fit the correlators at latgeextract the ground state NBS
wavefunction and then use the Schrodinger equation to reverse-entfiieepotential. However,
note that (2.8) has an implicitdependence which must be averaged over, see Section 4.

In this study only the behaviour of the S-wave potential has been coadiddmhis can be
expressed as:

Vr(r) =Ve(r) +s1-sVs(r), (2.9)
whereVc andVs are the spin-independent and spin-dependent potentials, respedcives; »
are the charm quark spins. Knowing the spin prodscts, = —3/4,1/4, for the pseudoscalar
and vector channels, respectively, allows the spin-independenpandependent potentials to be
written as linear combinations of the pseudoscalar and vector potektigsnd\,,

Velr) = ZVes(r) + W (1), (2.10)
Vs(r) :V\/(r)—Vps(r). (2.11)

3. Simulation Details

The correlator analysis outlined in Section 2 was performed on five differessembles, equiv-
alent to studying a temperature range of 0.76 - 1.2here T. =~ 185 MeV. Table1 lists the lattice
parameters used. Configurations with 2+1 dynamical flavors of lighkquaere generated using
a Symanzik gauge action and an anisotropic clover fermion action with stoatrisiné¢9]. The
anisotropy of the lattices i& = as/a; = 3.5 with ag ~ 0.12 fm anda;1 ~ 5.63 GeV. The charm
quark is also simulated with the anisotropic fermion action and its mass is set by theipseu-
doscalar effective mass to the experimemalalue at zero temperature [10]. Gaussian smeared
sources were employed throughout this study.
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Ns N T(MeV) T/Tc Negg

24 40 141 0.76 500
24 36 156 0.84 500
24 32 176 0.95 1000
24 28 201 1.09 1000
24 24 235 1.27 1000

Table 1: Lattice parameters used, including spatial and temponaédsion Ns andN;.

4. Results

In Figure 1 the local-extended charmonium correlators for all possibex@nseparations are
plotted for theN; = 40 ensemble. As the separation of the charm quarks at the sink incteases
signal, being related to the NBS wavefunction, see (2.4), decreases mitutkgas expected. The
correlator for ther = 0 case is a straight line on a log-plot, even for smralFor the correlators
corresponding to £ 0, curvature at smalf is noticeable. This is because the product of the NBS
wavefunctions is not positive-definite when the source and sink opsrate asymmetric, which
means the correlator is not a sum of only positive terms. As higher excities s&nish for larger
7, and the lowest excited state begins to dominate, all the lines become straight.

Figures 2-5 show the result of applying (2.8) to pseudoscalar andna@aonel correlators.
Finite differences are taken in tlieand t directions of data sets like that shown in Figure 1, to
obtain the spatial and temporal derivative terms of (2.8). The plots havenon features: i)
The potential values rapidly decrease for the largesto investigate this behaviour, the ground
state backward-mover term was added to (2.4), and the analysis rep@#éted the ground state
backward-mover term is present, the potential values decrease sigiyfilsss rapidly for the
largestt. Therefore, we are confident this feature is due to the absence oftkevard-mover
termin (2.4). i) Ther = 1 term is spurious because the finite difference taken i tifieection at
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Figure 1: Local-extended charmonium correlators for all possibleris separationdyl; = 40 ensemble.
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Figure 2: Pseudoscalar potentidfps. N; = 40.
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Figure 6: Spin-independent potentidlc. N; = 40.
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Figure 3: Pseudoscalar potentidfps. N; = 28.
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Figure5: Vector potential\y,. N; = 28.
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Figure 7: Spin-independent potentidlc. N; = 28.
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Figure 8: Spin-independent potentialc, for Figure 9: Spin-dependent potentialg, for dif-
differentN;. ferentN;.

this point includes the contact term of the correlator at 0. iii) Betweent = 2 andt = 7 the
potential is not stable. This is thought to be a combination of relativistic effttce artifacts,
and the interplay of excited states contributing to the correlator.

Combining the pseudoscalar and vector potentials of Figures 2-5 acgdodia. 10) gives the
spin-independent plots shown in Figure 6 and Figure 7. We removedthpmaicalr dependence
in the potential by performing a correlated fit\Wp s to a constant in the interval where it is a
plateau: Two other ensembles with = 16 & 20 were available, but in these cases the large
behaviour associated with the backward-mover and the snis@haviour overlap, and there are no
reliable plateaus in the potentials. The narrowing of the stalladow can be seen by comparing
theN; = 40 andN; = 28 plots.

Figure 8 shows the final result of the analysis for the spin-indepenmeantial. The right-
hand error bar represents the systematic uncertainty. This is obtainearyiggvthe start and
end of thet range within which fits are performed. The left-hand error represeatsttiistical
uncertainty. The masses of the 1S andJ2® states are included for reference. The potential
exhibits a clear temperature dependence, flattening atiaagé¢he temperature increases.

The spin-dependent potential can be calculated by applying (2.11) et is shown in
Figure 9. It exhibits a clear repulsive core consistent with the literature7l and like the spin-
independent potential, it also exhibits a temperature dependence.

5. Conclusions

There is a significant body of theoretical work studying the interquatkmi@l at non-zero
temperature using model, perturbative and lattice (nonperturbativedagprs. However, until
now, these lattice studies have all used the static (infinite quark mass) limit. THismworoves
upon these calculations by considering quarks with finite mass, and thheseas a first-principle
calculation of the charmonium potential of QCD at finite temperature. The metieodse is
based on the HAL QCD time-dependent approach which obtains the potirgietly from local-
extended correlators. The temperature dependence of the spin+id@epeharmonium potential
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is consistent with the expectation that the potential becomes deconfinindndaehigerature. This
work improves upon our earlier work [5, 8] in that our lattices are finerlarger volume, and have
2+1 rather than 2 flavors.
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