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reduced effective theories, and present numerical results from a lattice study.
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1. Introduction

In this contribution, we present our recent study of the jet quenching phenomenon in the
deconfined QCD plasma [1]. More precisely, following an idea originally proposed in ref. [2],
we discuss the strategy for a lattice computation of the jet quenching parameter q̂, which describes
the average increase in squared transverse momentum per unit length experience by a high-energy
quark propagating in the quark-gluon plasma (QGP). Recent related works include refs. [3 – 5],
while a different lattice approach to the same physical problem was put forward in ref. [6].

Jet quenching is defined as the suppression of particles with high transverse momentum and
of back-to-back correlations in heavy nuclei collisions [7]. It is considered as a “gold-plated”
observable providing evidence for a strongly coupled quark-gluon plasma: the interpretation of the
phenomenon is that a highly energetic parton moving through the deconfined medium undergoes
energy loss and momentum broadening, due to interactions with the QGP constituents [8].

2. Theoretical approach

Jet quenching belongs to the class of hard probes of the QGP: the hard scale involved is the
momentum of the parton Q, which can be of the order of many GeV. For a certain collision of heavy
nuclei, a complete theoretical description of the probability σ(M+N→hadron) of observing final-state
hadrons with given momenta necessarily involves both perturbative and non-perturbative aspects.
QCD factorization theorems, however, allow one to “separate” these different contributions in a
well-defined way [9],

σ(M+N→hadron) = fM(x1,Q2)⊗ fN(x2,Q2)⊗σ(x1,x2,Q2)⊗Dparton→hadron(z,Q2), (2.1)

where fM(x1,Q2) and fN(x2,Q2) are parton distribution functions, Dparton→hadron(z,Q2) is a fragmen-
tation function, while σ(x1,x2,Q2) describes the short-distance cross-section. In the following we
concentrate our attention on the latter, focusing on the propagation of a highly energetic quark in
the QGP. Following the standard formalism [10], one can describe the process in terms of multiple
soft scatterings, in the eikonal approximation, assuming that the hard, ultrarelativistic parton moves
on the light cone: then, the leading effect is the broadening of the parton momentum. The average
increase of the squared transverse momentum component per unit length defines the jet quench-
ing parameter q̂, which can be evaluated if the collision kernel C(p⊥), describing the differential
collisional rate between the parton and plasma constituents, is known:

q̂ =
〈p2
⊥〉

L
=
∫ d2 p⊥

(2π)2 p2
⊥C(p⊥). (2.2)

The collision kernel is related to the two-point correlation function of light-cone Wilson lines.
Therefore, as it is always the case for phenomena involving real-time dynamics, a direct computa-
tion of C(p⊥) via numerical simulations on a Euclidean lattice is not straightforward.

3. Soft physics contribution from a Euclidean setup

A full lattice computation of the collision kernel would necessarily require analytical con-
tinuation. However, we will now show that it is possible to extract the large, non-perturbative
contributions to C(p⊥) directly from Euclidean lattice simulations.
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The idea can be understood in the limit of very high temperatures T , in which the physical cou-
pling g becomes small, and a hierarchy of parametrically separated momentum scales emerges: in
addition to the typical scale of thermal excitations (πT ), one can identify “soft” (gT ) and “ultrasoft”
(g2T/π) scales, which are relevant for the long-wavelength modes of the QGP. The ultrasoft scale,
in particular, is intrinsically non-perturbative in nature: the long-wavelength modes of the plasma
are strongly coupled at any temperature, and large spatial Wilson loops are always confining. A
well-defined, systematic way to treat the physics at these different scales is by means of dimension-
ally reduced effective theories [11]. More precisely, the dynamics of the soft scale can be described
by a static, purely Euclidean, effective theory, which corresponds to three-dimensional Yang-Mills
theory coupled to an adjoint scalar field (“electrostatic QCD” or EQCD). In turn, the low-energy
limit of EQCD is captured by an effective theory which is just three-dimensional Yang-Mills the-
ory, encoding the physics at the ultrasoft scale (“magnetostatic QCD” or MQCD). The typically
large next-to-leading order (NLO) corrections affecting perturbative expansions in thermal QCD
are related to soft, essentially classical, fields.

As observed in ref. [2], for physics on the light cone, it turns out that the contributions from soft
modes are insensitive to the precise value of the parton velocity: in particular, they would remain
unchanged even for superluminal partons. This idealized case is obviously unphysical, but it would
make the parton world-line space-like: then, it ought to be possible to extract the soft contribution
to the correlation function of light cone Wilson lines from a Euclidean setup. Indeed, this can
be proven rigorously [2, 3]: in momentum space, the two-point correlation function of spatially
separated (|t| < |z|) light-like Wilson lines G<(t,x⊥,z) can be written in terms of the difference
between a retarded (G̃R) and an advanced (G̃A) correlator,

G<(t,x⊥,z) =
∫

dωd2 p⊥dpz
[

1
2
+nB(ω)

][
G̃R(ω, p⊥, pz)− G̃A(ω, p⊥, pz)

]
e−i(ωt−x⊥·p⊥−zpz),

(3.1)
where nB denotes the Bose-Einstein distribution. Shifting the momentum component along the di-
rection of motion as p′z = pz−ωt/z, the integration over frequencies can be carried out by analyti-
cal continuation into the upper (lower) complex half-plane for the retarded (advanced) contribution.
This leads to a sum over Matsubara frequencies involving the Euclidean correlator G̃E,

G<(t,x⊥,z) = T ∑
n∈Z

∫
d2 p⊥dp′zG̃E(2πnT, p⊥, p′z +2πinTt/z)ei(x⊥·p⊥+zp′z). (3.2)

All non-zero modes are suppressed at large separations. The soft contribution, however, is entirely
encoded in the n = 0 mode, which is time-independent and therefore can be evaluated in EQCD.

4. Lattice implementation

The lattice computation of the two-point correlation function of light-cone Wilson loops is
then straightforward. We regularize the super-renormalizable continuum EQCD Lagrangian

L =
1
4

Fa
i jF

a
i j +Tr

(
(DiA0)

2)+m2
ETr
(
A2

0
)
+λ3

(
Tr
(
A2

0
))2

(4.1)

on the lattice using the Wilson formulation, and fix its parameters (the 3D gauge coupling and the
mass- and quartic-term coefficients) by matching to high-temperature QCD [11]. We chose a setup
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Figure 1: The gauge-invariant operator describing the two-point correlation function of light-cone Wilson
lines appearing in eq. (4.2) involves a set of Hermitian parallel transporters along the real time direction
H(x), obtained from exponentiation of the scalar field A0(x).

corresponding to QCD with n f = 2 light dynamical quarks, at two temperatures T ' 398 MeV and
2 GeV, respectively equal to about twice and ten times the deconfinement temperature [12].

The two-point correlator of light-cone Wilson lines can be made gauge-invariant by “closing
it” (with the inclusion of transverse parallel transporters) to a loop and taking its trace, W (`,r).
Then, its lattice implementation becomes straightforward. An important point to remark, however,
is the following: although the effective theory that we consider is purely spatial, the operator must
describe real time evolution. For this reason, the lattice discretization of the two light-cone Wilson
lines involves insertions of the local Hermitian operator H(x) = exp[−ag2

EA0(x)], representing a
parallel transporter along the real-time direction:

〈W (`,r)〉=
〈

Tr
(

L3L1L†
3L†

1

)〉
, (4.2)

with L3 = ∏(U3H) and L1 = ∏U1, see fig. 1. This lattice operator has well-defined renormaliza-
tion properties [13]. From the expectation value of W (`,r) (that we compute with the multilevel
algorithm [14]) one can extract a “potential” V (r),

〈W (`,r)〉= exp [−`V (r)] , (4.3)

which is nothing but the transverse Fourier transform of the collision kernel C(p⊥).

5. Results and discussion

Our results for V (r) are shown in the left-hand-side panel of fig. 2: they exhibit very good
scaling properties and are compatible with the perturbative predictions that V (r) should vanish for
r = 0, and that at distances r ' 1/g2

E it should include a linear contribution, with the slope of the
dashed line displayed in the figure. Note that this short-distance behavior is dramatically different
from the one of the usual potential extracted from ordinary Wilson loops in 3D Yang-Mills theory
(which we also computed, for comparison with the MQCD study discussed in ref. [4]), shown in
the right-hand-side panel of fig. 2.
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Figure 2: Left-hand-side panel: Our results for V (r) extracted from eq. (4.3), for our lower temperature
T ' 398 MeV. The slope predicted perturbatively for rg2

E ' 1 is also shown. Right-hand-side panel: The
static-quark potential extracted in three-dimensional Yang-Mills theory. The dashed curve is a short-distance
parametrization based on the analysis carried out in ref. [4].

Since q̂ is given by the second moment associated with the C(p⊥) kernel, it can be related
to the curvature of V (r). Following the approach discussed in ref. [4], we arrive at the result
that the soft NLO contribution to q̂ is quite large: 0.55(5)g6

E for T ' 398 MeV, and 0.45(5)g6
E for

T ' 2 GeV. Taking also the other known contributions into account, our analysis leads to a rough
estimate for the final value of q̂ in the ballpark of 6 GeV2/fm for RHIC temperatures. Interestingly,
this result is comparable with strong-coupling predictions from holography [15], as well as with
phenomenological computations [16].

In summary, we have shown that a lattice approach is possible for certain real-time problems
involving physics on the light cone. In particular, here we have focused on soft physics in thermal
QCD (but related ideas have also been discussed in the context of QCD at zero temperature [17]).
We emphasize that the outlined approach is systematic: this is not a model. The effective theory
study that we carried out in this work is based on the modern approach to thermal QCD, providing
a consistent framework to describe the physics at different momentum scales relevant for the QGP.
Although, by construction, the effective theory that we simulated does not capture phenomena at
the hard thermal scale, we stress that this is not a limit, but a virtue, of the formalism, allowing one
to disentangle effects of different physical origin.

As for possible extensions of this work, we plan to improve our extrapolation to the continuum
limit at short distances by simulations on finer lattices, and/or using improved actions (as originally
suggested in ref. [18]). We also plan to study in detail the temperature dependence of q̂ and com-
pare it with holographic expectations [15]. In the same spirit, it would also be interesting to repeat
this study in theories with more than N = 3 colors, in which the dynamics simplifies consider-
ably [19]. Recent lattice studies show that the static equilibrium properties of the QGP have very
little dependence on N, both in four [20] and in three spacetime dimensions [21], and, given that
all holographic computations are carried out in the large-N limit, it would be interesting to see if
this is also the case for quantities related to real-time dynamics.
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