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From heavy-ion collision experiments we know that the quark-gluon plasma behaves almost like
an ideal fluid and can be described by hydrodynamics. The dynamic properties of the quark-gluon
plasma are determined by transport coefficients.
The second order transport coefficient κ is related to a momentum expansion of the Euclidean
energy-momentum tensor correlator at vanishing Matsubara frequency. This allows the deter-
mination of κ from first principles without maximum entropy methods. We present the results
obtained by pure Yang-Mills lattice simulations in comparison to a computation in leading-order
lattice perturbation theory as well as the temperature dependence of the transport coefficient κ .
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Second order transport coefficient κ from the lattice C. Schäfer

1. Introduction

One of the major findings of the experimental heavy ion programme [1–4] is that QCD matter
at high temperatures and low densities behaves as a nearly ideal fluid with very low viscosity. This
conclusion is based on the fact that experimental data are excellently described by relativistic hy-
drodynamics, with transport coefficients fitted to the data [5]. Unfortunately, theoretical predictions
of transport coefficients from the fundamental theory QCD remain very difficult. An exception to
this conceptual difficulty is the second-order hydrodynamic coefficient κ [6, 7], which can be re-
lated to Euclidean correlation functions through Kubo formulae. Here we present a first attempt to
determine κ from the momentum expansion of a suitable two-point function in a lattice simulation.

2. The transport coefficient κ

2.1 Relativistic hydrodynamics

The basic quantity in relativistic hydrodynamics is the energy momentum tensor which can be
decomposed into an ideal part T µν

0 and a dissipative part Πµν

T µν = T µν

(0) +Π
µν , Π

µν = π
µν +(gµν +uµuν)Π. (2.1)

The dissipative contribution consists of a traceless part πµν and a part with non-vanishing trace Π.
The former has been specified for a non-conformal fluid in a second order gradient expansion in
N = 4 Super-Yang-Mills theory [7]

π
µν =−ησ

µν +ητπ

(
〈Dσ

µν〉+ ∇ ·u
3

σ
µν

)
+κ

(
R〈µν〉−2uαuβ Rα〈µν〉β

)
+ . . . . (2.2)

The kinetic coefficients are identified as transport coefficients. Besides the shear viscosity η and
the relaxation time τπ , to second order the transport coefficient κ enters the expansion and couples
to the symmetrized Riemann curvature tensor R, its contractions and the fluid’s four velocity uµ .

2.2 Thermal field theory

For the computation of the transport coefficient κ from QCD a relation between its definition
in relativistic hydrodynamics and quantum field theory is necessary. This can be achieved by
considering the fluid’s linear response to a metric perturbation and establishes a connection between
the transport coefficient κ and the low momentum behaviour of the retarded thermal correlator
of the energy momentum tensor [6]. In the case of vanishing frequency retarded and Euclidean
correlator coincide [8] and one finds

GE(ω = 0,~q) = G′(0)+
κ

2
|~q |2 +O(|~q |4), (2.3)

GE(x,y) = 〈T12(x)T12(y)〉 . (2.4)

The transport coefficient κ can now be obtained as the slope of the low momentum correlator
GE(q2). It has been determined in a low momentum expansion in pure gluodynamics in the ideal
gas limit, i.e. at vanishing coupling [9, 10],

κ = (Nc−1)
T 2

18
. (2.5)
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Remarkably, the transport coefficient κ has an non-vanishing value in flat spacetime, although it
is the kinetic coefficient in front of the Riemann curvature tensor in its definition from N = 4
Super-Yang-Mills theory (2.2).

3. Computation of κ in lattice QCD

3.1 Lattice framework

We employ Wilson’s Yang-Mills action on an anisotropic lattice implying different lattice
spacings in temporal and spatial direction, aσ and aτ , respectively,

S[U ] =
β

Nc
ReTr

[
1
ξ0

∑
x,i< j

(1−Ui j(x))+ξ0 ∑
x,i
(1−Ui0(x))

]
(3.1)

with lattice coupling β = 2Nc/g2, plaquette variables Uµν and bare anisotropy ξ0. Quantum fluc-
tuations cause a deviation of the actual anisotropy ξ = aσ/aτ . The two are related by a renormal-
isation factor η(β ,ξ ) = ξ/ξ0(β ,ξ ), whose numerical evaluation we take from [11]. The scale is
set for a specific value of the anisotropy, ξ = 2, by means of the string tension [12].

As will be discussed in section 3.4 the discretised energy-momentum tensor requires mul-
tiplicative renormalisation due to reduced translational invariance on the lattice. Regarding the
renormalisation procedure it is favourable to express the correlator (2.4) in terms of diagonal ele-
ments instead of nondiagonal ones. We establish this by the so called cubic symmetry [13]

〈T12(x)T12(y)〉=
1
2

[
〈T11(x)T11(y)〉−〈T11(x)T22(y)〉

]
. (3.2)

Additionally, temporal and spatial elements of the energy-momentum tensor require separate renor-
malisation factors Zτ and Zσ on an anisotropic lattice. The diagonal energy-momentum tensor
elements in the clover discretisation [14] read

a3
σ aτ Tii(x) =

β

128Nc
ReTr [Zτ(β ,ξ )T τ

ii (x)+Zσ (β ,ξ )T σ
ii ] , (3.3)

where

T τ
ii (x) = ξ0F̂2

0i(x)−ξ0 ∑
k 6=i

F̂2
k0(x), (3.4a)

T σ
ii (x) =−

1
ξ0

∑
k, j 6=i
k< j

F̂2
k j(x)+

1
ξ0

∑
k

F̂2
ki(x). (3.4b)

3.2 Connection of κ to lattice QCD

In order to extract the transport coefficient κ we compute the correlator (2.3) within the lattice
framework presented in section 3.1

a3
σ aτGE(q3) =

1
V ∑

x,y
e−iq3(x3−y3) 〈T12(x)T12(y)〉 . (3.5)
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The definition of the transport coefficient κ relies on a small momentum expansion of the correlator.
We identify temperature as the relevant scale for comparison with the momenta and demand qi/T <

1. With the discretised versions of temperature T = 1/(aτNτ) and momenta qi = 2π/(aσ Nσ )ni with
ni = 0,1, . . . ,Nσ −1 we find for the ratio on the lattice

qi

T
=

2πNτ

ξ Nσ

ni < 1. (3.6)

The temporal lattice extent Nτ is fixed by the temperature. In order to extract the transport coeffi-
cient κ by performing a linear fit of equation (2.3), the number of momenta obeying the constraint
(3.6) should be larger than three. Thus the simulation requires large spatial lattice extents Nσ ,
which makes the calculation costly. This can be partly remedied by working with anisotropic lat-
tices ξ > 1.

3.3 Computation of κ in lattice perturbation theory

In order to estimate lattice artefacts and check our numerics and renormalisation procedure, we
compute the transport coefficient κ from lattice perturbation theory. This is done on an anisotropic
lattice with anisotropy ξ in the case of vanishing coupling (g = 0). We find by expansions in the
lattice spacing and momentum for the correlator (2.3)

GE(q)
T 4 =(N2

c −1)

{
π4

N2
τ

(
2ξ 2

945
+

4
189

)

+
q2

T 2

[
1

36
+

π2

N2
τ

(
− ξ 2

240
+

49
2160

)]}
+O

(
q4,N−4

τ

)
, (3.7)

from which we identify the transport coefficient κ as

κ

T 2 = (N2
c −1)

[
1
18

+
π2

N2
τ

(
− ξ 2

120
+

49
1080

)]
+O

(
q4,N−4

τ

)
. (3.8)

3.4 Renormalisation procedure

The correlator defined in (2.4) suffers from ultraviolet divergences. We correct the correlator
by additive renormalisation, i.e. subtracting the vacuum part. We define a new vacuum corrected
expectation value by 〈O〉 = 〈O〉T −〈O〉0, where 〈O〉T is an observable evaluated at a given tem-
perature T and 〈O〉0 its vacuum contribution, i.e. evaluated at vanishing temperature.

Discretisation of spacetime also requires a multiplicative renormalisation, since the energy-
momentum tensor is the Noether-current corresponding to translational invariance and translations
only form a discrete symmetry group on the lattice. On an anistropic lattice the renormalisation
factor depends on the lattice coupling β and the anisotropy ξ . Additionally, temporal and spatial
direction require separate renormalisation. It is favourable to rewrite the energy-momentum tensor
as

T R
ii = Zτ(β ,ξ )

[
T τ

ii +
Zσ (β ,ξ )

Zτ(β ,ξ )
T σ

ii

]
. (3.9)

Performing the renormalisation procedure we need the ratio Zσ (β ,ξ0)/Zτ(β ,ξ0) and the absolute
scale Zτ(β ,ξ0). The former can be obtained by renormalisation group invariant quantities [15],
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Run β Nτ Nσ Nvac
τ ξ aσ [fm] T vac/Tc T vac/Tc

i 7.1 6 120 72 2 0.026 9.4 0.8
ii 7.1 8 120 72 2 0.026 7.1 0.8
iii 6.68 6 120 42 2 0.044 5.6 0.8
iv 6.14 6 120 24 2 0.094 2.6 0.7

Table 1: Simulation parameters for four evaluations of κ . The lower temperature T vac is required for
renormalisation.

the latter by utilising the physical interpretation of the energy-momentum tensor. The diagonal
spatial elements are equivalent to the pressure

〈
T R

ii
〉

0 = p, where we use the continuum extrapolated
pressure from the lattice. We determine the absolute renormalisation constant by matching the
energy-momentum tensor computed from the lattice [16] with the continuum pressure at the same
temperatures.

4. Numerical results

4.1 Comparison to lattice perturbation theory

Our first simulation aims at reproducing the free lattice peturbation theory result of the trans-
port coefficient κ from section 3.3. The running coupling allows to reach the weak coupling
regime in lattice QCD by increasing the temperature. Thus we simulate at T = 9.4Tc with with
Tc ≈ 260MeV for pure Yang-Mills theory [17]. The complete simulation parameters can be found
in row (i) in table 1.

Figure 1 shows the correlator GE(q)/T 4 for five momenta compared to the result from lat-
tice perturbation theory. Fitting the datapoints of the correlator to a linear function yields for
the transport coefficient κ/T 2 = 0.40(26), which agrees with the lattice perturbation theory result
κLPT/T 2 = 0.47. An exact agreement is not yet expected since at T = 9.4Tc we entered rather
the weak coupling regime than the free theory regime. Thus the lattice perturbation theory result
for the transport coefficient κ suffers from the missing next-to-leading order corrections and their
lattice artefacts.

4.2 Temperature dependence

In principle, the temperature can be varied at fixed β and lattice spacing by changing Nτ , where
lower temperature implies larger Nτ . However, due to the constraint on the momenta from equation
(3.6) this would require a similar increase of the spatial volume and thus a drastical growth of the
numerical effort. Hence the fixed scale approach is not practical for temperatures approaching the
phase transition.

We therefore investigate the temperature dependence of κ at fixed Nτ/Nσ by repeating the
simulations at various lattice couplings β . In this case the different temperatures are evaluated at
different lattice spacings, and consequently also different spatial volumes in physical units. How-
ever, since our lattice spacings are all aσ < 0.1fm, we expect the lattice artefacts on the temperature
dependence of the transport coefficient κ/T 2 to be negligible. As a consistency check for this, we
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Figure 1: GE(q)/T 4 for momenta q2/T 2 < 1 com-
pared to results from lattice perturbation theory
(LPT). The slope of the linear fit gives κ/2.
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Figure 2: Temperature dependence of the transport
coefficient κ/T 2 compared to ADS/CFT correspon-
dence and lattice perturbation theory.

T/Tc 9.4 7.1 5.6 2.6
aσ [fm] 0.026 0.026 0.044 0.094

κ/T 2 0.40(26) 0.41(84) 0.39(30) 0.28(20)

Table 2: Lattice results for the transport coefficient κ/T 2 at different spatial lattice spacings aσ and temper-
atures T/Tc.

also perform simulations at different temperatures but the same lattice spacings (simulations (i) and
(ii) in table 1).

The results are shown in figure 2. The datapoint at T = 7.1Tc suffers from large errorbars
since the spatial lattice extents have been kept fixed while increasing the temporal lattice extent Nτ .
Because of the constraint (3.6) this corresponds to slightly larger momenta and generates a loss of
accuracy in the fit. Within the errorbars, the values of κ/T 2 at T = 9.4Tc and T = 7.1Tc agree and
thus justify the comparison at different lattice spacings and temperatures.

The numerical values for the transport coefficient κ are also summarised in table 2. Within
errorbars, the temperature dependence of the transport coefficient is consistent with that of the ideal
gas, κ ∼ T 2, which is also the prediction of ADS/CFT [6]. Assuming this functional dependence
we may increase accuracy by averaging the data points with Nτ = 6 to give our final result,

κ
avr = 0.36(15)T 2. (4.1)

Because of still large errorbars, our result also quantitatively covers both the leading order perturba-
tive as well as the AdS/CFT prediction rescaled by the lattice QCD entropy [16]. This would sug-
gest that, besides improved simulation methods, next-to-leading order analytic calculations should
be able to give a result with improved accuracy.
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