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A self-consistent construction of the overlap lattice Dirac operator coupled to chiral chemical po-
tential is proposed. With the help of the constructed operator we compute electric current induced
by a constant magnetic field (Chiral Magnetic Effect). We find that the result disagrees with the
one predicted by anomaly-based arguments and comment on the origin of this discrepancy. We
demonstrate that a straightforward lattice calculation with a constant magnetic field and a uni-
form chiral chemical potential in fact corresponds to an infrared singularity in the dimensionally
reduced polarization tensor and hence yields the result which is extremely sensitive to infrared
regulators such as finite volume or finite temperature.
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1. Introduction

In these Proceedings we would like to check the validity of the well-known expression for the
electric current generated due to the Chiral Magnetic Effect (CME) [1]

~j =
µ5~B
2π2 (1.1)

for lattice chiral fermions. The most obvious setup for lattice studies of the CME is the measure-
ment of the electric current along constant magnetic field with quantized flux in a finite volume
and in the presence of a constant chiral chemical potential [2]. While the way to introduce con-
stant magnetic field on the lattice is well known, so far no systematic construction of the chiral
lattice Dirac operator with chiral chemical potential was given in the literature. E.g. the results
of [2] were obtained with the Wilson-Dirac fermions which are chirally symmetric only at small
momenta. Since the CME current is saturated by fermionic states at high momenta close to the UV
cutoff (see e.g. the derivation of [1] and also the discussion in Section 4 below), it is reasonable to
expect that the validity of the expression (1.1) will crucially depend on whether the lattice Dirac
operator has the (appropriately defined) chiral symmetry also at high momenta.

In this work we construct the chiral lattice Dirac operator with finite chiral chemical potential
µ5 basing on the overlap Dirac operator at finite chemical potential [3, 4] and use it to calculate the
CME current (1.1) for free fermions in a constant magnetic field. It turns out that for symmetric
lattices with equal spatial and temporal dimensions the result tends to the half of the current (1.1)
in the infinite volume limit. In order to explain the disagreement with the conventional expression
(1.1), we demonstrate that lattice measurements of the electric current (1.1) in the presence of a
homogeneous chiral chemical potential and a homogeneous external magnetic field in fact corre-
spond to an infrared momentum-space singularity of the one-loop polarization tensor on the lowest
Landau level. This singularity is regularized by infrared cutoffs such as finite volume and finite
temperature. As a result, the relation (1.1) is in general invalid on the lattice for constant ~B and µ5

and should only be realized if one considers the case of a spatially homogeneous chiral chemical
potential which slowly varies in time.

2. Overlap Dirac operator with chiral chemical potential

It is convenient to start the construction of the overlap Dirac operator with chiral chemical
potential with the assumption that the chiral chemical potential µ5 can in general depend on spatial
lattice coordinates. In any static background gauge field the derivative of the free energy of the
fermion gas over µ5 (x) should yield the static density of the axial charge q5 (x) = ψ̄ (x)γ0γ5ψ (x),
which is, in turn, the imaginary part of the derivative of the free energy over the time-like compo-
nent of the axial gauge field A0 (x). Taking into account that for the free fermion gas described by
the Dirac operator Dov the free energy is given by F =−T logZ =−T logdet(Dov), we get

−T
∂

∂ µ5 (~x)
logZ = q5 (~x) =−T

∂ logdet(Dov)

∂ µ5 (~x)
= iT ∑

~x,τ

∂ logdet(Dov (µ5))

∂A0 (x,τ)
, (2.1)

where T is the temperature and τ is the Euclidean time coordinate (we assume that the lattice
spacing is equal to unity). Repeating this derivation for multiple derivatives over µ5 (~x) at different
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spatial coordinates~x, we conclude that the chiral chemical potential should enter the overlap Dirac
operator as the imaginary part of the time-like component A0 (x) of an axial gauge field Aµ (x).

We are thus led to a more general problem of constructing the overlap Dirac operator in the
background of an axial gauge field. Continuum Dirac operator in the background of vector and
axial gauge fields Vµ (x) and Aµ (x) reads

D
[
Vµ (x) ,Aµ (x)

]
= γµ

(
∂

∂xµ
− iVµ (x)− iγ5Aµ (x)

)
. (2.2)

Under gauge transformations of both gauge fields Vµ (x)→Vµ (x)+∂µv(x) and Aµ (x)→ Aµ (x)+
∂µa(x), it transforms as follows:

D
[
Vµ (x)+∂µv(x) ,Aµ (x)+∂µa(x)

]
= eiv(x)+ia(x)γ5 D

[
Vµ (x) ,Aµ (x)

]
e−iv(x)+ia(x)γ5 . (2.3)

In this notation, we treat the local fields v(x) and a(x) as diagonal operators which act on some local
field ψ (x) as [vψ] (x)= v(x)ψ (x) and [aψ] (x)= a(x)ψ (x). Note that while gauge transformations
of the vector gauge field result in similarity transformations of the Dirac operator, this is not so for
the gauge transformations of the axial gauge field. The fact that the Jacobian J ∼ det

(
e2ia(x)γ5

)
of the transformation (2.3) is different from unity upon regularization is precisely the origin of the
U (1) axial anomaly.

The starting point of our construction of the chiral lattice Dirac operator with axial lat-
tice gauge field Aµ (x) is the lattice counterpart of the gauge transformations (2.3). Follow-
ing [5], we replace the variation of the continuum Dirac operator (2.2) δaD

[
Vµ (x) ,Aµ (x)

]
=

i
{

a(x)γ5,D
[
Vµ (x) ,Aµ (x)

]}
under infinitesimal gauge transformations a(x) of the axial gauge

field with the local form of the Lüscher transformations [6]:

δaDov = (1−Dov/2)γ5a(x)Dov +Dova(x)γ5 (1−Dov/2) , (2.4)

where we have omitted the functional arguments of Dov
[
Vµ (x) ,Aµ (x)

]
for the sake of brevity. We

have also assumed that both gauge fields Vµ (x) and Aµ (x) are associated with lattice links and
are non-compact, so that V−µ (x) ≡ −Vµ (x− µ̂) and A−µ (x) ≡ −Aµ (x− µ̂). They are related to
compact link variables via the standard exponentiation formula, e.g. Uµ (x) = exp

(
iVµ (x)

)
. We

now require that the variation (2.4) is generated by an infinitesimal gauge transformation of the
lattice axial gauge field Aµ (x):

δaDov
[
Vµ (x) ,Aµ (x)

]
= Dov

[
Vµ (x) ,Aµ (x)+a(x+ µ̂)−a(x)

]
−Dov

[
Vµ (x) ,Aµ (x)

]
. (2.5)

Expanding the right-hand side to the first order in a(x) and comparing the result with the infinites-
imal variation due to a gauge transformation of the vector gauge field [5], we obtain the following
functional equation for Dov

[
Vµ (x) ,Aµ (x)

]
:

∂

∂Aµ (x)
Dov

[
Vµ (x) ,Aµ (x)

]
=

∂

∂Vµ (x)
Dov

[
Vµ (x) ,Aµ (x)

]
γ5
(
1−Dov

[
Vµ (x) ,Aµ (x)

])
(2.6)

In order to solve this seemingly nonlinear equation, it is convenient to formulate it in terms of the
projected overlap Dirac operator

D̃ov
[
Vµ (x) ,Aµ (x)

]
=

2Dov
[
Vµ (x) ,Aµ (x)

]
2−Dov

[
Vµ (x) ,Aµ (x)

] . (2.7)
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This transformation projects the eigenvalues of Dov from the Ginsparg-Wilson circle in the complex
plane to the imaginary axis. Taking the derivative of (2.7) over the axial gauge field Aµ (x), we get

∂

∂Aµ (x)
D̃ov =

2
2−Dov

∂

∂Aµ (x)
Dov

2
2−Dov

=

=
(
1+ D̃ov/2

) ∂

∂Vµ (x)
Dov γ5 (1−Dov)

(
1+ D̃ov/2

)
=

=
(
1+ D̃ov/2

) ∂

∂Vµ (x)
Dov

(
1+ D̃ov/2

)
γ5 =

∂

∂Vµ (x)
D̃ov γ5, (2.8)

where we have again omitted the arguments of Dov and D̃ov. In the process of derivation we have
used the Ginsparg-Wilson relations and the identity 2

2−Dov
= 1+ D̃ov

2 . We see that now the functional
equation for D̃ov is linear and is quite easy to solve explicitly. It is convenient to write the solution
in terms of the chiral projectors P± = 1±γ5

2 :

D̃ov
[
Vµ (x) ,Aµ (x)

]
= P−D̃ov

[
Vµ (x)+Aµ (x)

]
P++P+D̃ov

[
Vµ (x)−Aµ (x)

]
P− (2.9)

where the projected overlap operators D̃ov
[
Vµ ±Aµ

]
are obtained from the overlap Dirac operators

Dov
[
Vµ ±Aµ

]
in the background of the vector gauge fields Vµ (x)±Aµ (x). The latter are coupled

to fermions in a standard way by including the corresponding link factors into finite difference
operators entering the Dirac-Wilson operator which is used to define the overlap Dirac operator
[3].

Returning now to the construction of the overlap Dirac operator at nonzero chiral chemical
potential µ5, we conclude from equations (2.9) that the projected overlap operator in this case
should take the following form:

D̃ov (µ5) = P−D̃ov (µ =+µ5)P++P+D̃ov (µ =−µ5)P− (2.10)

where D̃ov (µ =±µ5) are the projected overlap operators at finite chemical potential which is equal
to +µ5 or −µ5. The corresponding overlap Dirac operators at finite chemical potential should
satisfy the Ginsparg-Wilson relations and can be explicitly constructed following [4] as

Dov (µ) = 1+ γ5UsignReΛU−1, (2.11)

where Λ is the diagonal matrix of complex eigenvalues of the operator γ5Dw (µ), Dw (µ) is the
Wilson-Dirac operator at finite chemical potential µ and U is the similarity transformation which
diagonalizes the operator γ5Dw (µ).

3. Chiral Magnetic Effect with overlap Dirac operator

Using the overlap Dirac operator constructed in the previous Section, we now calculate the
current (1.1) for free fermions in the external magnetic field on a finite four-dimensional lattice. To
this end we perform numerical diagonalization of the operator γ5Dw (µ) in the directions x and y
perpendicular to the magnetic field ~B = B~ez using LAPACK. In the directions parallel to the field
the diagonalization is performed exactly in the plane wave basis ψ (τ,z;kτ ,kz) =

√
T
Lz

eikτ τ+ikzz,
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Figure 1: On the left: CME current (3.1) as a function of the chiral chemical potential µ5 for different lattice
sizes and for one quantum of magnetic flux through the lattice section. Thin and thick solid lines correspond
to the expression (1.1) and to the half of it, respectively. On the right: the coefficient c in jz =

cµ5B
2π2 as a

function of inverse lattice size Ls = Lt at different numbers NB of magnetic flux quanta and at different mass
parameters ρ in the overlap kernel γ5Dw.

where kτ = 2πT (n+1/2), n ∈ Z are the lattice Matsubara frequencies, kz =
2πm
Lz

, m ∈ Z is the z
component of the discrete lattice momenta and Lz is the lattice size in the z direction. The overlap
Dirac operator at finite chemical potential µ =±µ5 is computed using (2.11), and then the overlap
Dirac operator at finite µ5 is computed from (2.10). In order to calculate the electric current jz in
the direction of the magnetic field, we additionally introduce a constant vector gauge field Vz in this
direction. After the matrix of the operator Dov (µ5) is computed, we again perform its numerical
diagonalization for the directions perpendicular to the magnetic field and calculate its eigenvalues
λ
(ov)
i (kτ ,kz). The current density is then calculated as the derivative of the free energy of the

fermion gas over Vz:

jz = −
T

LxLyLz

∂

∂Vz
logdet(Dov (µ5))

∣∣∣∣
Vz=0

=− T
LxLyLz

∑
kτ ,kz

∑
i

1

λ
(ov)
i (kτ ,kz)

∂λ
(ov)
i (kτ ,kz)

∂kz
, (3.1)

where we have taken into account that the zero-frequency, zero-momentum component of Vz simply
amounts to the shift kz→ kz−Vz in all the momentum sums.

The CME current calculated according to (3.1) is illustrated on Fig. 1. On the left plot we
show the ratio of the CME current to the magnetic field strength B as a function of chiral chemical
potential µ5 for different lattice sizes. The number of magnetic flux quanta NB = 2πB/(Lx Ly)

through the lattice cross-section is fixed to be NB = 1. Thin and thick straight solid black lines on
the plot corresponds to the expression (1.1) and to the half of it ( jz =

µ5B
4π2 ), respectively. One can

see that the data is actually described by half of the conventional formula (1.1) with a very good
precision. In order to make this statement more precise, we perform the linear fits jz =

c µ5 B
2π2 of

the dependence of jz/B on µ5. The coefficient c is shown on the right plot on Fig. 1 as a function
of inverse lattice size Ls (we assume Ls = Lt) for different values of NB and for different mass
parameters ρ in the overlap kernel γ5Dw [3]. One can see that as Ls tends to infinity, c tends to 0.5.
Thus on the lattice we get only half of the CME current (1.1), in disagreement with anomaly-based
arguments [1].
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4. Infrared sensitivity of the Chiral Magnetic Effect

In order to understand the origin of the discrepancy between the lattice results presented on
Fig. 1 and the conventional expression for the CME (1.1), let us return for a while to the con-
tinuum theory. In a constant magnetic field the CME current is completely saturated by NB-times
degenerate states belonging to the lowest Landau level. These states are additionally labeled by the
momenta kz in the direction of the magnetic field and the Matsubara frequencies kτ , so that the final
expression for the CME current reads [1]:

jz =
T B

2πLz
∑

kτ ,kz

2(kz−µ5)

k2
τ +(kz−µ5)

2 . (4.1)

This expression is UV divergent and requires regularization (IR singularity of the propagator is
removed since for anti-periodic boundary conditions kτ is never zero). One possible way to obtain
a finite result for the sum (4.1) is to sum over the Matsubara frequencies kτ first (see e.g. [1]). In
the limit of zero temperature and infinite Lz we are then left with the following integral over kz:

jz =
B

(2π)2

+∞∫
−∞

dkz sign (kz−µ5) . (4.2)

This is again a formally divergent integral, since the integrand does not tend to zero at kz→±∞.
Applying the most straightforward cutoff regularization, which amounts to replacing the infinite
limits of integration with a finite interval [−ΛUV ;ΛUV ] with ΛUV � µ5,

√
B, we obtain exactly the

expression (1.1) [1]. However, a closer inspection reveals that such a cutoff regularization in fact
violates the conservation of vector current and is thus not physically consistent.

To regularize the expression (4.1) in a consistent way, we first note it is proportional to the
expectation value of the electric current jz for a two-dimensional fermions restricted to the z− t
plane in the four-dimensional space in the presence of a static space-independent vector gauge field
Vz ≡ µ5. Assuming that Vz ≡ µ5 is small, we can expand (4.1) to the linear order in µ5. We then
conclude that the CME current is proportional to the zz component of the one-loop polarization
tensor Πi j (qτ ,qz) at zero photon frequency qτ = 0 and zero photon momentum qz = 0 in 2D QED:

jz =
B

2π
Πzz (qτ = 0,qz = 0)µ5. (4.3)

In a regularization consistent with vector current conservation, Πi j (q) should have the form (see

e.g. [7]) Πi j (q) = 1
π

δi jq2−qiq j
q2 , thus

Πzz (q) =
1
π

q2
τ

q2
z +q2

τ

. (4.4)

We see now that the point qτ = 0, qz = 0 is a singular point of the function (4.4), so that the value
of the function crucially depends on the limit in which this singular point is approached. If we
first take the limit of zero frequency qτ and then send qz to zero, we get identically zero. This
corresponds to the situation of time-independent µ5 which very slowly varies in space. On the
other hand, if we first set qz = 0 and only then set qτ → 0, we recover the conventional answer
(1.1). This limit corresponds to spatially constant µ5 which slowly changes with time.
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On the lattice both qτ and qz become discrete variables, so it does not make sense to distinguish
the order of limits qτ → 0 and qz→ 0. From the lattice results presented above we see that instead
the finite lattice size acts as an infrared cutoff which regularizes the IR singularity in (4.4) and
replaces the indefinite continuum result (4.4) with the mean of the two limits discussed above. This
is then exactly half of the expression (1.1).

Another, more technical argument which demonstrates IR sensitivity of the CME current (1.1)
can be given based on the expression (3.1). It can be represented as a sum over kτ and kz of
the derivative of the function F (kτ ,kz) = ∏

i
λ
(ov)
i (kτ ,kz) over kz. Now if we fix the tempera-

ture T in lattice units and tend Lz to infinity, the sum over kz turns into an integral of the form∫
dkz ∂F (kτ ,kz)/∂kz, which is clearly zero on the lattice due to compactness and periodicity of

the Brillouin zones. We again see that the final result for the CME current strongly depends on the
IR regularization - in this case, on the order in which the limits of the infinite spatial volume and
zero temperature are taken.

5. Conclusions

We conclude that the most straightforward way to measure CME on the lattice by measuring
the electric current in the limit of static and spatially homogeneous magnetic field and chiral chem-
ical potential corresponds to an infrared singularity of the one-loop polarization tensor in 2D QED.
For free fermions on a finite lattice this singularity is resolved in such a way that exactly half of the
conventional CME current (1.1) is observed. These observations imply, in particular, that the CME
current (1.1) is not in general robust against IR effects and one can expect some corrections due to
interactions between fermions.
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