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Inverse magnetic catalysis in QCD
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We propose a physical mechanism for inverse magnetic catalysis, the suppression of the chiral

condensate by an external magnetic field in QCD around the critical temperature. We show that

this effect, seen in lattice simulations, is a result of how the sea quarks react to the magnetic

field. We find that the suppression of the condensate happens because the quark determinant

can suppress low quark modes by ordering the Polyakov loop. This mechanism is particularly

efficient around Tc where the Polyakov loop effective potential is flat and the determinant can

have a significant ordering effect. Our picture suggests that for the description of QCD in large

magnetic fields it is crucial to properly capture the interaction between the Polyakov loop and the

sea quarks, both in low-energy effective models and on the lattice.
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Figure 1: The dependence of the quark condensate on the magnetic field, computed at different tempera-

tures around Tc.

1. Introduction

In heavy-ion collision experiments rapidly moving ions create large magnetic fields. There

have been speculations how these large magnetic fields can influence the thermodynamics of these

strongly interacting systems. For some time the common wisdom was that at any temperature the

magnetic field should enhance the chiral condensate, an effect termed “magnetic catalysis” (see [1]

for a review). This scenario was supported by calculations based on low-energy effective models

and also by the first lattice QCD simulations. However these first lattice studies were based either

on the quenched approximation [2] or they were performed using heavier than physical quarks

and without a proper continuum extrapolation [3, 4]. Later on, another lattice study, now using

physical quark masses and performing an extrapolation to the continuum limit, reached a differ-

ent conclusion [5]. There it was found that while at low temperature there is magnetic catalysis,

around the crossover temperature, Tc, the reaction of the system to an external magnetic field is

more complicated. The condensate is a non-monotonic function of the magnetic field and a large

enough magnetic field actually suppresses the condensate rather than enhancing it. To illustrate this

point, in Fig. 1 we show the dependence of the quark condensate on the magnetic field at various

temperatures around Tc (figure taken from Ref. [6]).

In the present work we offer a physical explanation of why this can happen. We show that there

are two competing mechanisms through which the magnetic field influences the quark condensate.

One involves valence quarks and that enhances the condensate, the other involves sea quarks and

that suppresses the condensate. The non-monotonic behaviour observed around Tc is a result of

these two competing effects. We also identify the relevant gauge degrees of freedom playing the

most important role in the sea quark suppression mechanism. These degrees of freedom are the

Polyakov loops. We argue that effective low-energy models can account for this effect only if they

properly take into account the interaction of sea quarks with the Polyakov loop. A more detailed

account of this work can be found in Ref. [7].
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Figure 2: The spectral density of the staggered Dirac operator around zero computed with different mag-

netic fields in the Dirac operator. In all three cases the averaging was done over the same set of gauge

configurations generated with zero magnetic field.

2. Valence versus sea effect

In order to understand how the external magnetic field influences the quark condensate, our

starting point is the path integral expression for the condensate,

〈ψ̄ψ〉(B) =
1

Z

∫

dA e−S(A) det[D(A,B)+m]
︸ ︷︷ ︸

“sea”

Tr
[
(D(A,B)+m)−1

]

︸ ︷︷ ︸

“valence”

, (2.1)

where the integration is over all the gauge field configurations. For illustration we use this schematic

expression containing only one quark flavour of mass m; the generalisation to several flavours

is straightforward. The dependence of the condensate on the external field, B, comes from two

sources. Firstly, the quark determinant in the measure depends on B which means that changing B

will change the relative weight of different gauge configuration. Secondly, the operator itself is also

dependent on B, that is, the spectrum of the Dirac operator in a fixed gauge background changes

with B. Using the terminology of Ref. [4] we call the first source of B dependence “sea” effect and

the second one “valence” effect.

Let us first look at the valence effect, how the spectrum of the Dirac operator in a fixed gauge

background reacts when the magnetic field is switched on. In Figure 2 we show the spectral density

of the staggered lattice Dirac operator around zero with three different values of the magnetic field

in the Dirac operator. It is important to note that in all three cases the average spectral density

was computed over the same set of gauge configurations, generated with zero magnetic field. Thus

this figure demonstrates the valence effect only. We can easily see that the external magnetic field

drives the low-lying Dirac modes closer to zero and thus enhances the spectral density. According

to the Banks-Casher relation, for vanishing quark mass, the quark condensate is proportional to the

spectral density of the Dirac operator at zero. By continuity we expect that if the quark mass is
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Figure 3: The renormalised average Polyakov loop as a function of the temperature for three different

values of the background magnetic field. The different types of dashed line represent data obtained at

different lattice spacings and the shaded regions correspond to the continuum extrapolations together with

their uncertainties.

small, the condensate is still dominated by the lowest part of the spectrum. Thus an enhancement

of low Dirac modes by the magnetic field implies and enhancement of the condensate. This is the

basic mechanism behind magnetic catalysis happening well below Tc.

2.1 Sea quarks and the Polyakov loop

Let us now look at how the magnetic field in the quark determinant influences the condensate.

Switching on the magnetic field will change the relative weight of the different gauge configura-

tions. To see how this changes the typical gauge configurations contributing to the path integral we

look for gauge field degrees of freedom that could play an important role in this mechanism. In

Figure 3 we plot how the average Polyakov loop changes across the transition for three different

values of the magnetic field. It is apparent from the figure that around the critical temperature the

magnetic field strongly enhances the Polyakov loop.

To understand why the Polyakov loop is so strongly affected by the magnetic field we look at

the quark action, the logarithm of the determinant,

Sq =− logdet(D+m) =−∑
i

log(λi +m) , (2.2)

where λi are the eigenvalues of the Dirac operator. For small quark mass the fluctuations of this ac-

tion are dominated by the small eigenvalues of the Dirac operator, so the determinant will strongly

suppress those gauge configurations that have a large number of small Dirac modes. Since the

magnetic field enhances small Dirac eigenvalues, switching on the magnetic field will amplify the

suppression of small Dirac modes by the quark determinant.

How can we understand the connection of this effect to the Polyakov loop? How is the ordering

of the Polyakov loop connected to the number of small Dirac modes? To see this we recall that
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Figure 4: Scatter plot of the Polyakov loop versus the change in quark action, ∆Sq, when the magnetic

field is switched on. Each data point corresponds to a 103 × 4 gauge configuration generated with zero

magnetic field close to Tc. The lower (red) line indicates the simple average of the Polyakov loop for these

configurations while the upper (blue) line shows the average computed by reweighting each term with the

corresponding change in the quark effective action.

at low temperature, well below the transition, where the Polyakov loop is disordered, there are

typically many small Dirac modes. This is how chiral symmetry is spontaneously broken there. In

contrast, above Tc, chiral symmetry is restored and there are much less small Dirac modes. The

physical reason for this is that above Tc the Polyakov loop is ordered and the lowest quark modes

are similar to the Matsubara modes with the corresponding eigenvalues being roughly proportional

to the temperature. This is the mechanism behind chiral symmetry restoration above Tc.

In this way the quark action effectively works to order the Polyakov loop and restore chiral

symmetry. Since the magnetic field enhances small Dirac modes, this ordering effect of sea quarks

is also enhanced by the magnetic field. This means that configurations that have a small average

Polyakov loop and as a result more small Dirac modes, get suppressed when the magnetic field is

switched on. This is analogous to what happens in the presence of more quark flavours. Introducing

more quark flavours will amplify the ordering effect of the determinant on the Polyakov loop and

thus chiral symmetry is restored at a lower temperature. The magnetic field has a similar effect by

pushing small Dirac modes down and enhancing the spectral density at the low end.

To demonstrate explicitly how this happens, in Fig. 4 we show a scatter plot of the Polyakov

loop versus the change in quark action when the magnetic field is switched on,

∆Sq = logdet(D(0,A)+m)− logdet(D(B,A)+m), (2.3)

for a set of gauge configurations generated with zero magnetic field. In the same figure we also

show the simple average of the Polyakov loop over these gauge configurations (lower, thick red

line) and the average computed by reweighting each configuration using the corresponding change

in the quark action. The reweighted Polyakov loop is clearly much more ordered than the original

one, in accordance with Fig. 3.
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Figure 5: Scatter plot of the The Polyakov loop versus the quark condensate. Each data point corresponds

to a 103 × 4 gauge configuration generated with zero magnetic field close to Tc.

3. The Polyakov loop and the condensate

We saw that switching on the magnetic field orders the Polyakov loop and that implies a

suppression of small quark modes by the determinant (sea). The very same small Dirac modes are

the key to understand how the quark condensate is influenced by the magnetic field. To see this, we

note that the condensate can be written as

ψ̄ψ = tr(D+m)−1 ≈ ∑
1

λi +m
, (3.1)

where the sum is over the whole spectrum of the Dirac operator and m is the quark mass. For small

quark mass this sum is increasingly dominated by the lowest part of the Dirac spectrum. Thus

the suppression of small Dirac modes by the magnetic field implies a suppression of the quark

condensate.

To illustrate this point, in Fig. 5 we show a scatter plot of the quark condensate versus the

Polyakov loop on the same set of configurations that we used for Fig. 4. The strong correlation be-

tween the condensate and the Polyakov loop indicates that these two quantities are both intimately

connected to small quark modes as we described above.

4. Competition between “sea” and “valence”

We saw that when the magnetic field is switched on, sea quarks suppress those gauge config-

urations that have many small Dirac modes. At the same time the magnetic field in the operator

enhances the condensate (valence). Both of these effects depend on how small quark modes react

to the external magnetic field. The non-monotonic behaviour of the condensate with respect to the

magnetic field can be explained by these two competing effects. Around the critical temperature, if

the magnetic field is strong enough, the suppression of the condensate through the sea quarks wins,

resulting in a condensate decreasing for larger fields.

It is curious why the sea suppression of the condensate can be so effective exactly around the

critical temperature. The scenario that we described can also explain this. We saw that the most
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effective way of sea quarks to suppress small Dirac modes is to order the Polyakov loop. A small

contribution from the magnetic field in the determinant to the Polyakov loop effective potential is

usually not enough to have a significant ordering effect. This is true everywhere except around the

critical temperature. Since at Tc there is a cross-over, the minimum of the Polyakov loop effective

potential there is very shallow and a small contribution to it from the magnetic field can have a

significant ordering effect.

5. Conclusions

We described the mechanism that is responsible for inverse magnetic catalysis, the suppression

of the quark condensate by an external magnetic field around Tc. We showed that the key to this

is the effect of the magnetic field on small quark modes in the Dirac operator. The magnetic field

enhances small quark modes which normally, through a Banks-Casher type argument, implies an

enhancement of the condensate. This is what we called the valence effect. However, around Tc the

magnetic field in the determinant significantly alters the typical gauge configurations that contribute

to the path integral. As a result, the Polyakov loop gets more ordered, small Dirac modes and also

the condensate are suppressed. This is what we called sea effect.

Our picture also suggests the most important criteria that any effective model or lattice sim-

ulation has to fulfil in order to be able to properly account for inverse magnetic catalysis. Firstly,

both in the quark determinant and in the operator measuring the condensate, the dominance of the

lowest part of the Dirac spectrum is strongly dependent on the quark mass being small. Therefore,

it is essential to use physical quark masses. Secondly, the sea effect depends on the interaction of

the condensate and the Polyakov loop which is “mediated” by the small quark modes. Therefore,

these degrees of freedom have to be included in some form in any low energy effective model used

to describe how the magnetic field affects the condensate.
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