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field. We argue that the effect may result in a reduction of charge fluctuations at finite temperature,
as well as in the suppression of longitudinal chromo-magnetic field at finite density and magnetic
field.
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1. Introduction

In the recent years there has been growing interest to understand the effects of magnetic field
on chiral fermions (see [1] and references therein). Amongst the most pronounced are the chiral
magnetic effect [2, 3] and charge separation effect [4, 5].

In this work we illustrate a similar effect of the induction of electric charge, which is a unique
effect of magnetic and pseudo-magnetic (for QCD chromomagnetic) fields and (iso-)chemical po-
tential [6]. The effect has direct application in graphene where the role of pseudo-magnetic field is
played by an in-plane strain. We also discuss the interplay of the effect of Polyakov loop at finite
temperature in QCD and the suppression of charges due to its fluctuations.

2. Lattice results: Caloron in the magnetic field

In this section we describe lattice results of a KvBLL [7, 8] caloron configuration in the mag-
netic field. Calorons were shown to split into monopoles when a parameter called holonomy (i.e.
Polyakov loop at spatial infinity) is taken to be nontrivial. In other words when

1
2

trP(|xxx| → ∞) =
1
2

trP∞ =
1
2

trPei
∫ β

0 A0(|xxx|→∞)dτ 6= 0 (2.1)

where P denotes “path-ordering”. These monopoles (and their bound states: bions) were shown to
be of great importance in a large class of theories1 such as deformed Yang-Mills (YM), QCD(adj)
and (softly broken) N = 1,2 Super YM and Super QCD on R3×S1 and remarkable connections
were made to resurgence theory (see e.g. [9, 10, 11, 12] and references therein) They were also
implemented to QCD and YM phenomenologically in [13, 14, 15, 16], and efforts of direct obser-
vation on the lattice have been made [17, 18, 19].

We first brifly describe these object and how they arise in YM on R3×S1. Assuming a so-
called stringy gauge, so that A0→ v τ3

2 , the self-dual monopole solution becomes, asymptotically2

Aϕ ≈
1
r

τ3

2
tan(θ/2) A0 ≈

(
v− 1

r

)
τ3

2
, (2.2)

where φ is the polar angle coordinate and θ/2. This asymptotic field describes the Dirac monopole,
with a Dirac string lying on the negative z-axis, i.e. with the asymptotic magnetic field

Bi ≈
ri

r3
τ3

2
. (2.3)

The above configuration is easily shown to have the topological charge

QBPS =
vβ

2π
. (2.4)

1Theories such as softly broken SYM, and QCD(adj) in confined phase, are believed to be continuously connected
to their non-supersymmetric counterpart.

2Because of self-duality EEE = BBB, these monopoles are sometimes referred to as dyons [13, 14, 20, 15]. This name is
however somewhat misleading because these objects do not interact with the A0 field like an electrically charged particle
would (see discussions in [10, 21] as well as in the original reference [7]).
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However, it is important to keep in mind that A0 is really a compact field, and its length is not
gauge invariant. Let us now consider the same solution as before, but with parameter v replaced by
2π/β − v. If we perform an anti-periodic gauge transformation U(τ) = ei τ

β
τ3

and a global gauge
rotation taking τ3→−τ3 the asymptotic field becomes A0 ∼ (v+ 1

r )
τ3

2 and the magnetic field has
the opposite direction (i.e. is an anti-monopole) Bi ≈ − ri

r3
τ3

2 . However, the topological charge of
this monopole is

QKK =
2π− vβ

2π
= 1−QBPS . (2.5)

The KK stands for Kaluza-Klein, as the monopole has a “gauge twist” in the compact time direc-
tion. Notice that this gauge twist does not affect the asymptotic fields, but it affects the core where
the solution becomes non-abelian.

The nontrivial fact [7, 8] is that together these two solutions combine into a caloron (instanton
at finite temperature), which is consistent with their topological charges adding to unity. This
solution is known exactly, however its expressions are lengthy and we refer the reader to the original
references [7, 8].

Here we wish to study the caloron solution at finite magnetic field. In particular the interesting
observables are charge and charge density in this background. The charge is given by

〈Q〉= 〈J0〉=
∫

d3x
〈
Ψ̄(x)γ0Ψ(x)

〉
= tr(D−1

γ0) , (2.6)

where D−1(x− y) =
〈
Ψ̄(x)Ψ(y))

〉
is the Dirac propagator, and tr denotes the trace over all matrix

indices and space. The integrand in the above expression is the charge density.
Since the Dirac propagator is anti-hermitian, at zero chemical potential the charge density

must be either zero or purely imaginary. Since imaginary charge is absurd, one might conclude
that the charge density must vanish identically if no chemical potential is present. This reasoning
is wrong, as it assumes the gauge background to be physical. In fact the gauge background has an
unphysical component. Namely the A0 gauge field does not represent a physical field, but instead
is an auxiliary field imposing Gauss constraint (see e.g. [22]). For any fixed configuration however
A0 looks like an imaginary color chemical potential. The gauge invariance is not violated, as the
background which we discuss is a background of a spontaneously broken gauge symmetry, where
the color direction is selected by the asymptotic value of the Polyakov loop.

We postpone the meaning of this imaginary charge until section 4, and for now we simply
present the results of the lattice computation of the charge density and total charge in the back-
ground of the caloron and magnetic field. The results are presented in Fig. 1 (for details of the
Lattice computation see [6]). The results are for the magnetic field aligned with the symmetry
axis of the caloron (i.e. line connecting the two constituent monopoles). There is a pronounced
charge accumulation in between the two monopole-constituents. There are also two bumps around
the monopoles, with opposite signs, which tend to cancel the overall charge. The accumulation of
charge, therefore, comes from the center. To understand this, let us first discuss a simpler example
in two dimensions.

3. Charge catalysis in 2D

In this section we describe a simple setup of massless fermions in 2 space dimensions coupled
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Figure 1: (Left) Lattice results of charge density on the symmetry axis of the caloron at maximally nontrivial
holonomy (i.e. trP∞ = 0) using the Overlap Dirac Operator. The red and the blue lines indicate the positions
of the constituent monopoles. (Right) the total (imaginary) charge as a function of magnetic field. Figures
taken from [6].

to constant U(1)×U(1) magnetic field B = B+Fτ3 where we refer to τ3 = ±1 as the iso-spin
index3, and to B as magnetic, and F as pseudo-magnetic field. The spectrum is given by

E±,qn =
√

2n|qB±qF | , for τ
3 =±1 (3.1)

where q =±1 is the elementary charge. If we introduce iso-chemical potential µ3, it is not difficult
to see that at zero temperature and with µ3 <

√
2|B−F | due to the unmaching degeneracies of

populated particle and antiparticle states there is an overall induced charge in the system (see Fig.
2 left)

〈Q〉= A
2π

(|B+F |− |B−F |) = A
π

max(B,F) =
max(ΦB,ΦF)

π
(3.2)

where A is the area and ΦB,F are the magnetic flux quanta.
If however we take µ3 arbitrary, when µ3 reaches the first excited state with degeneracy ∝

|B−F | the induced charge reduces in steps, and the zero-temperature expression becomes

〈Q〉= |ΦB +ΦF |− |ΦB−ΦF |+2
⌊

µ2
3

2|B+F |

⌋
|ΦB +ΦF |−2

⌊
µ2

3
2|B−F |

⌋
|ΦB−ΦF | . (3.3)

The factor of 2 in the last two terms is due to the spin degeneracy of the excited states and b. . .c
is the floor function. The expression above shows an oscillatory pattern as a function of chemical
potential/magnetic field. Fig. 2 shows these oscillations at zero and finite temperature as a function
of F/B at fixed µ . The effect is clearly washed away with temperature.

4. Charge catalysis in Yang-Mills

In this section we will generalize the charge catalysis in 2D to the one in 4D Yang-Mills
theory. We will see that this will explain the numerical observation made in Sec. 2. In the case

3For applications of this setup to graphene see[6]
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Figure 2: (Left) An illustration of charge catalysis by magnetic and pseudo-magnetic field at zero temper-
ature and with µ3 <

√
2|B−F |. The shaded region shows the step function of Fermi-Dirac distribution at

zero temperature. The red and blue labels show degeneracies of the Landau zero mode states. It is clear that
the non-compensation of populated τ3 =+1 particle and τ3 =−1 antiparticle states induces a charge in the
system (Right) Charge per area as a function of field F in units of B for µ3 = 1.5

√
B. Figures taken from [6]

of the caloron, the main contribution to the generated charge came from the region in between
two monopoles. This is precisely the region where the quasi-abelian chromomagnetic field can be
approximated to be uniform and along the symmetry axis of the caloron. We therefore take that the
total magnetic field is given by

F12 = B = B+Fτ
3 . (4.1)

The one loop effective action (i.e. free energy) for non-interacting quarks, is given by

logdet /D = logZ = ∑
n

∑
q,τ3=±1

gq
n log(1+ e(qµ+qτ3iv−Eq,τ3

n )β )+ · · · (4.2)

where gn is the degeneracy factor and dots represent the vacuum contribution which does not de-
pend on chemical potential or on holonomy. The holonomy dependence appears as an imaginary
chemical potential in the expression.

Since Eq,τ3

n =
√

2n|qB+qτ3F + kz|, taking temperature to be low enough so that we can ig-

nore n 6= 0 contributions, and with ∑n gn→V
∫ dkz

2π

|qB+qτ3F |
2π

a simple calculation shows that

〈Q〉= ∂

∂ µ
logZ

∣∣∣∣∣
µ=0

= iV
v

(2π)2 (|B+F |− |B−F |) , v ∈ (−2πT,2πT ) (4.3)

where V is the volume of the system. Notice that the charge grows linearly with B until B = F and
then it remains constant, similar to the numerical observation4 of Sec. 2.

However, as we mentioned, the v is not a physical field, and it should be integrated over, so the
total charge will always be zero. However the effect will show up in charge fluctuations. Although

4Note that one might naively conclude that the saturation happens when B = Fc where F is the chromomagnetic
field at the center of the caloron. This is in fact incorrect, as the chromomagnetic field is not the strongest in between
the two monopoles. Nevertheless because of the good alignment of the chromomagnetic and magnetic field there it is
visually most pronounced in this region.
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naively the charge fluctuations will scale with V 2, the fluctuations in holonomy v2 will scale with
∼ 1/V . The final result for this simple model then becomes [20].

〈
Q2〉= V T max(|F |, |B|)

π2

(
1− min(F2,B2)

max(F2,B2)

)
(4.4)

where the second term in the parenthesis comes from the effect we described.
However the effect might be even more pronounced at zero temperature and finite quark chem-

ical potential. In particular introduction of quark chemical potential at zero temperature would
generate color charge if there is chromomagnetic field in the vacuum. Since color is confined5,
this scenario should be severely disfavored, reducing the fluctuations of the field-strength along
the magnetic field, i.e.

〈
trF2

12
〉

drastically. However due to charge oscillations similar to the ones
observed in 2D (see Fig. 2), this suppression would have an oscillatory character. Presumably this
can be tested on the lattice in two-color QCD with even number of flavors, where there is no sign
problem at finite density.
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