
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
8
7

SO(2N) and SU(N) gauge theories

Richard Lau∗† and Michael Teper
Rudolf Peierls Centre for Theoretical Physics, University of Oxford
E-mail: richard.lau@physics.ox.ac.uk
E-mail: m.teper1@physics.ox.ac.uk

We present our preliminary results of SO(2N) gauge theories, approaching the large-N limit.
SO(2N) theories may help us to understand QCD at finite chemical potential since there is an
orbifold equivalence between SO(2N) and SU(N) gauge theories at large-N and SO(2N) theories
do not have the sign problem present in QCD. We consider the string tensions, mass spectra, and
deconfinement temperatures in the SO(2N) pure gauge theories in 2+1 dimensions, comparing
them to their corresponding SU(N) theories.

31st International Symposium on Lattice Field Theory LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.
†Funded by the Science and Technology Facilities Council.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:richard.lau@physics.ox.ac.uk
mailto:m.teper1@physics.ox.ac.uk


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
8
7

SO(2N) and SU(N) gauge theories Richard Lau

1. Introduction

SO(N) gauge theories do not have a sign problem at finite chemical potential [1], unlike SU(N)

QCD theories, and share particular equivalences with SU(N) gauge theories. There are, of course,
direct equivalences between specific groups that share common Lie algebras, such as SU(2) ∼
SO(3) or SU(4)∼ SO(6), and we showed in a previous paper that each pair of gauge groups share
particular physical characteristics between their pure gauge theories [2].

However, there is also an orbifold equivalence between SO(2N) and SU(N) theories [1]. Un-
der this orbifold equivalence, we can obtain an SU(N) QCD theory through a projection symmetry
applied to a parent SO(2N) QCD-like gauge theory. This equivalence holds if we take the large-N
limit whilst relating the couplings g in the two theories by

g2∣∣
SU(N→∞)

= g2∣∣
SO(2N→∞)

(1.1)

This large-N equivalence, together with the lack of a sign problem in SO(N) gauge theories,
indicates that the properties of SO(2N) gauge theories may provide a potential starting point to-
wards answering problems with SU(N) QCD theories at finite chemical potential [1].

In this contribution, we calculate physical quantities in SO(2N) pure gauge theories. We know
that we can extrapolate to the large-N limit for both SO(2N) and SU(N) theories by keeping the
t’Hooft coupling g2N constant. We also know that the leading correction between finite N and
the large-N limit is O(1/N) for SO(2N) and O(1/N2) for SU(N). By comparing these values at
large-N limit, we hope to relate the two gauge theories, a process summarised in (1.2).

SU(N→ ∞) SO(2N→ ∞)

SU(N) SO(2N)

-�
large-N equivalence

?

6

O
(

1
N2

)
corrections

?

6

O( 1
N ) corrections (1.2)

In this contribution, we consider the string tension, mass spectra, and deconfinement temper-
atures in SO(N) pure gauge theories for N = 6, 8, 12, 16. The lattice action for an SO(N) gauge
theory is

S = β ∑
p

(
1− 1

N
TrUp

)
β =

2N
ag2 (1.3)

We calculate these physical quantities on several lattice spacings before extrapolating to the con-
tinuum limit for each SO(N) value. Using (1.2), we can then extrapolate to the large-N limit.

Since lattice gauge theories generally have a bulk transition separating strong and weak cou-
pling regions, we need to know where this transition is so that we can extrapolate to the continuum
limit on the weak coupling side. Furthermore, we need this transition to occur at coupling values
corresponding to lattice volumes at which we can reasonably calculate quantities. Otherwise, the
volumes may become too large to obtain results. This is the problem in D = 3+ 1 dimensions,
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where the bulk transition occurs at a very small lattice spacing and so the volumes can become too
large to obtain continuum extrapolations [3]. However, in D = 2+1 dimensions, the bulk transition
occurs at larger lattice spacings and we can obtain continuum extrapolations at reasonable volumes.
It is for this reason that we initially use D = 2+1 lattices for our calculations.

In this contribution, we publish our preliminary results for these measurements. We will pub-
lish further results, including some for D = 3+1 dimensions, in future papers.

2. String Tensions

We can obtain string tensions σ by using correlators of Polyakov loop operators lP(t) to extract
the mass of the lightest flux loop winding around the spatial torus. From a mass mP(l) of a Polyakov
loop of lattice length l, we can obtain the string tension using the Nambu-Goto model [4]

mP(l) = σ l
(

1− π

3σ l2

) 1
2

(2.1)

We obtained the continuum string tensions for SO(N) for N = 6, 8, 12, 16. We show these
values in Figure 1, comparing them to known values for SU(N) gauge groups [5]. In Figure 1,
we rescaled N→ Ñ such that Ñ = N/2 for SO(N) and Ñ = N for SU(N) to make the comparison
between the two gauge theories clearer. We fitted the SO(N) values with a first order fit in 1/Ñ and
the SU(N) values with a first order fit in 1/Ñ2.
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Figure 1: Large-N extrapolation of continuum string tensions.

In Figure 1, we see that these values approach each other in the large-N limit (after the appro-
priate rescaling). Furthermore, the values in this limit agree within errors, as shown in Table 1.

3. Mass Spectra

We can obtain mass spectra by using correlators of operators projecting on to JP glueballs with
spin J and parity P = ± (since SO(N) traces are real, charge conjugation is necessarily positive).
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Gauge group
√

σ

g2Ñ

∣∣∣
Ñ→∞

SO(2N) 0.1981(6)
SU(N) 0.1974(2)

Table 1: Large-N string tensions for SO(2N) and SU(N).

We used a variational method to construct operators that best project on to these states [6]. We
obtained the lightest and excited 0+ and 2+ states as well as the lightest 0−, 1+, 1−, and 2− states
for SO(N) with N = 6, 8, 12, 16. Using these continuum values, we obtained the mass spectra in
the large-N limit, as shown in Figure 2 and Figure 3. The fits are first order in 1/N.
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Figure 2: Large-N extrapolation of continuum 0+/− glueball masses in SO(N) gauge theories.

We can compare the large-N values for the lightest states to the corresponding known large-N
values for SU(N) theories [7]. These values, shown in Table 2, agree within errors.

JP SO(2N→ ∞) SU(N→ ∞)

0+ 4.14(3) 4.11(2)
0− 9.44(22) 9.02(30)
1+ 9.65(41) 9.98(25)
1− 9.56(48) 10.06(40)
2+ 6.95(9) 6.88(6)
2− 7.03(8) 6.89(21)

Table 2: Large-N mass spectra for SO(2N) and SU(N).

4. Deconfining Temperatures

We expect SO(2N) gauge theories to deconfine at some temperature T = Tc, just like SU(N)
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Figure 3: Large-N extrapolation of continuum 1+/− and 2+/− glueball masses in SO(N) gauge theories.

gauge theories. We can search for the deconfinement temperature by using an ‘order parameter’ O
such as the temporal plaquette Ut or the Polyakov loop lp. We can identify the range of β in which
the deconfinement phase transition occurs by examining histograms of the expectation values of
the order parameters. We show one such example of a set of histograms in Figure 4. In the first
histogram, we can see that the order parameter 〈lp〉 is centred around zero since the SO(2N) gauge
theory has a Z2 symmetry. As we approach β = βc corresponding to the value of Tc, this Z2

symmetry spontaneously breaks. We can see this symmetry breaking in the histograms since, as
we increase β towards βc, peaks for the deconfined phase at non-zero values of 〈lp〉 appear and
grow, whilst the peak for the confined phase shrinks.

We can identify the deconfinement temperature by using susceptibilities χO ∼ 〈O2〉−〈O〉2 for
an order parameter O. To do this, we obtain specific values of susceptibilities around βc. Plots of
these susceptibilities χO against β in the region around βc then form a peak with a maximum at βc.
In order to calculate the susceptibility at an arbitrary value of β = β ′ around βc, we use reweighting
methods [8]. We can consider the generation of lattice configurations as sampling an underlying
density of states that is independent of β . From any one run at β = β ′′, we can reconstruct the
density of states in the neighbourhood of β ′′, and from several runs, we can evaluate the density of
states extensively over a range of β . We can then use this reconstructed density of states to obtain
observables at an arbitrary value of β ′ within that range.

We calculated the susceptibilities χUt
the temporal plaquette Ut and χ|lp| of the absolute value

of the Polyakov loop χ|lp| for a range of different volumes, and then reweighted the data to obtain βc

for each volume. We show an example of this in Figure 5. Here, the points represent susceptibility
values χ|lp| for independent runs at specific values of β . The curve represents the reweighted
susceptibility values using the data from each independent run to reconstruct the density of states.
The value of β with the maximum reweighted susceptibility is then the value of βc for this volume.
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Figure 4: Histograms of 〈lp〉 in SO(16) at several values of β around βc for an 823 lattice.
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Figure 5: χ|lp| in SO(16) for an 823 lattice. In this example, we find that βc = 149.32(1).

For a volume L2
s Lt with Ls � Lt , we can set the temperature T = 1/(aLt). Having obtained

the value of βc for a range of volumes, we can then extrapolate to the large spatial volume limit
Ls→ ∞ for a fixed value of Tc to find the value of βc in that limit. We show an example of such an
extrapolation in Figure 6. The fits are first order in (Lt/Ls)

2.
Having obtained βc in this limit, we can calculate a dimensionless quantity such as Tc/

√
σ by

evaluating observables at this value of β = βc, and then extrapolate those quantities to the large-N
limit. We gave our preliminary values for Tc/

√
σ in the large-N limit in [2]. We compare those

values to known values for SU(N) gauge theories [9] in Table 3, and we see that they agree within
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Figure 6: βc in the large spatial volume limit in SO(16) at Tc =
1
3a with Ls = 8, 10, 12, 14. In this example,

we find from χUt
that βc(Ls→ ∞) = 150.21(3) and from χ|lp|that βc(Ls→ ∞) = 150.16(2) .

errors. We will publish further calculations of these deconfining temperatures in future papers.

Gauge group Tc/
√

σ

SO(2N→ ∞) 0.924(20)
SU(N→ ∞) 0.903(23)

Table 3: Large-N deconfinement temperatures for SO(2N) and SU(N).

5. Conclusions

We see that there there is evidence supporting the large-N equivalence between SO(2N) and
SU(N) gauge theories. In particular, we see that these pure gauge theories in D = 2+1 dimensions
have matching physical properties at large-N for their string tensions, mass spectra, and deconfining
temperatures. Following these preliminary results, we will publish further results in future papers.
However, these preliminary results indicate that SO(2N) theories may indeed provide a starting
point for answering problems with SU(N) QCD theories at finite chemical potential.
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