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1. Introduction

Despite intensive theoretical efforts over the past decade and more, wedo still not have a quan-
titative understanding of QCD at large baryon density. This is primarily due tothe sign problem
preventing first-principles Monte Carlo simulations in this régime. One way of circumventing this
is to study QCD-like theories without a sign problem, and use these to provide abenchmark for
model studies and other methods which do not suffer from the sign problem.The simplest such
theory, which shares with QCD the properties of confinement and dynamical symmetry breaking,
is 2-colour QCD (QC2D).

In a series of papers [1, 2, 3, 4] we have studied QC2D with 2 flavours of Wilson fermion at
nonzero baryon chemical potentialµ and temperatureT , culminating in a tentative mapping out of
the phase diagram in the(µ,T ) plane [3, 4]. Here we will report on the determination of the phase
transition lines [4] and present new results for the gluon propagator at nonzeroµ andT . Updated
results for the equation of state are presented in a separate talk [5].

We use a standard Wilson gauge and fermion action augmented with a diquark source term
to lift low-lying eigenvalues in the superfluid phase. The lattice spacing isa = 0.178(6)fm and
mπ/mρ=0.8, with amπ = 0.645(8) [3]. We have performed simulations at four fixed tempera-
tures,T = 47,70,94 and 141 MeV, corresponding toNτ = 24,16,12 and 8 respectively, for a
range of chemical potentialsµa =0.0–0.9. Atµa = 0.35,0.4,0.5 and 0.6 we have also performed
temperature scans on 163 ×Nτ lattices withNτ =4–16. For the diquark sourcej we have used
ja = 0.02,0.04 in order to allow an extrapolation to the physicalj = 0 limit. We refer to [3, 4] for
further details about the action and parameters.

2. Superfluid to normal transition

Figure 1 shows the order parameter for superfluidity, the (unrenormalised) diquark condensate
〈qq〉, as a function of the temperatureT , for µa = 0.35,0.4,0.5 and 0.6. Also shown are the
results of a linear extrapolation toj = 0. We can clearly observe a transition from a superfluid
phase, characterised by〈qq〉 6= 0, at low temperature, to a normal phase with〈qq〉 = 0 at high
temperature, with a transition in the region 0.08. Ta . 0.12 for all four values ofµ.

We have estimated the critical temperaturesTs for the superfluid to normal transition by deter-
mining the inflection points for〈qq〉 at ja = 0.02 and 0.04, and extrapolated the resulting values to
j = 0 using a linear Ansatz. The results are shown in fig. 3. We see thatTs is remarkably constant
over the whole range ofµ-values considered. The indications are that the transition happens at a
somewhat lower temperature atµa = 0.35, but this point is already very close to the onset from
vacuum to superfluid atT = 0, µoa = mπa/2 = 0.32, suggesting thatTs(µ) rises very rapidly from
zero atµ = µo before suddenly flattening off.

3. Deconfinement transition

The Polyakov loop〈L〉 serves as the traditional order parameter for deconfinement in gauge
theories, with〈L〉 6= 0 signalling the transition to a deconfined phase. Strictly speaking,〈L〉 is
never zero in a theory with dynamical fermions, but it typically increases withtemperature from
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Figure 1: Diquark condensate〈qq〉 as a function of temperatureT for chemical potentialµa =

0.35,0.4,0.5,0.6 (top to bottom). The circles are data extrapolated toj = 0 using a linear Ansatz for
ja ≤ 0.04; the shaded circles denote the results of a linear extrapolation usingja = 0.02,0.03 only.

a very small value in a fairly narrow region, which may be identified with the deconfinement
transition region. Unlike the diquark condensate, the renormalisation of the Polyakov loop depends
on temperature; specifically, the relation between the bare Polyakov loopL0 and the renormalised
Polyakov loopLR is given byLR(T,µ) = ZNτ

L L0((aNτ)
−1,µ). In order to investigate the sensitivity

of our results to the renormalisation scheme, we have used two different conditions to determine the
constantZL [4], LR(T = T0,µ = 0) = c, with T0 = 1

4a−1 andc = 1 (Scheme A) orc = 0.5 (Scheme
B). Figure 2 shows〈L〉 evaluated in both schemes, as a function of temperature. The Scheme B
data have been multiplied by 2 to ease the comparison with the Scheme A data. Also shown are
cubic spline interpolations of the data and the derivative of these interpolations, with solid lines
corresponding to Scheme A and dotted lines to Scheme B.

At all µ, we see a transition from a low-temperature confined region to a high-temperature
deconfined region. In contrast to the diquark condensate, we see a clear, systematic shift in the
transition region towards lower temperatures as the chemical potential increases. For all fourµ-
values, the Polyakov loop shows a nearly linear rise as a function of temperature in a broad region,
suggesting that the transition is a smooth crossover rather than a true phasetransition. This is
reinforced by the difference between Scheme A and Scheme B, with the crossover occuring at
higher temperatures in Scheme B. Atµ = 0, the difference between the two schemes is small, but
increases with increasingµ, suggesting a broadening of the crossover.

Because of the smaller value ofZL, our results for Scheme B are considerably less noisy than
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Figure 2: The renormalised Polyakov loop〈L〉 as a function of temperatureT for ja = 0.04 andµa =

0.35,0.4,0.5,0.6, with two different renormalisation schemes: Scheme A (solid symbols) and Scheme B
(open symbols), see text for details. The solid (dashed) lines are the derivatives of cubic spline interpolations
of the data points for Scheme A (B). The smaller, shaded symbols are results forja = 0.02. The black circles
and thick lines in the bottom right panel are theµ = j = 0 results from [3].

those for Scheme A. For this reason, we choose to define the crossoverregion to be centred on the
inflection point from Scheme B, with a width chosen such that it also encompasses the onset of the
linear region from Scheme A.

The transition region taken from theja = 0.04 data is shown in fig. 3. From Fig. 2 we see
that at lowT , the value of〈L〉 increases asj is reduced, and atµa = 0.6, the crossover region will
most likely move to smallerT in the j → 0 limit. However, we do not have sufficient statistics for
ja = 0.02 at lowT to make any quantitative statement about this.

4. Gluon propagator

One of the main motivations for studying dense QC2D on the lattice is to provide constraints on
approaches which do not suffer from the sign problem. The gluon propagator provides a key input
for several of these approaches, in particular functional studies using the functional renormalisation
group or Dyson–Schwinger equations. These are most often carried out in the Landau gauge.

In Landau gauge only the transverse part of the vacuum propagator isnon-zero. However,
the external parameters break manifest Lorentz invariance, hence the gluon propagatorD must be
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Figure 3: Phase diagram of QC2D with mπ/mρ = 0.8. The black circles denote the superfluid to normal
phase transition; the green band the deconfinement crossover. The blue diamonds are the estimates for the
deconfinement line from [3].
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Figure 4: The zeroth (top) and first (bottom) Matsubara mode of the magnetic (left) and electric (right)
gluon propagator as a function of chemical potentialµ for selected values of the spatial momentumqs = |~q|,
and different temperatures.
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Figure 5: Thermal behaviour of the zeroth Matsubara mode of the magnetic (left) and electric (right) prop-
agators atµa = 0.5 and ja = 0.04 on 163×Nτ lattices, for selected spatial momentaqs = |~q|.

decomposed into chromoelectric and chromomagnetic modes,DE andDM, respectively,

Dµν(q0,~q) = PM
µνDM(~q2,q2

0)+PE
µνDE(~q2,q2

0) . (4.1)

The projectors on the longitudinal and transversal spatial subspaces,PE
µν andPM

µν , are defined by

PM
µν(~q ,q0) =

(

1−δ0µ
)

(1−δ0ν)

(

δµν −
qµqν

~q2

)

,

PE
µν(~q ,q0) =

(

δµν −
qµqν

q2

)

−PM
µν(~q ,q0) .

(4.2)

In this section we extend the results presented in [4] to a wider area of the(µ,T ) plane. We
have fixed our gauge configurations to the minimal Landau gauge using the standard overrelaxation
algorithm. The Landau gauge condition has been imposed with a precision|∂µAµ | < 10−10.

In figure 4 we show the two lowest Matsubara modes for selected spatial momenta as a function
of chemical potential forNτ = 24,16,12,8. The results shown are forja = 0.04, but we have
found no significant difference forja = 0.02. We have investigated the volume dependence on the
Nτ = 24 lattices and found it to be very mild [4]. At the three lower temperatures, both the electric
and magnetic form factors are roughly independent ofµ up toµa≈ 0.5, and become suppressed for
largeµ. This changes dramatically at the highest temperature shown (Nτ = 8), where for the lowest
(static) Matsubara mode the electric form factor becomes strongly suppressed with increasingµ,
while the magnetic form factor for small spatial momenta has a clear enhancement at intermedate
µ and an enhancement at largeµ for larger spatial momenta. On closer inspection it is possible to
see the onset of this behaviour also forNτ = 12. No qualitative differences are seen between the
electric and magnetic form factors for the first nonzero Matsubara mode.

We now turn to the thermal behaviour of the gluon propagator at fixed chemical potential. Fig.
5 shows the zeroth Matsubara modes of the propagators forµa = 0.5 and ja = 0.04 on 163×Nτ

lattices as a function of temperature. The magnetic component has a very mild enhancement at

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
8
9

Phase transitions in QC2D Jon-Ivar Skullerud

intermediate temperatures and a slight suppression at very highT . In contrast, the electric prop-
agator shows a strong suppression with increasing temperature. We note that the deconfinement
crossover for this value ofµ happens for 0.8 . Ta . 2.0, and that this coincides roughly with the
region where the magnetic propagator is enhanced. In contrast to early studies in pure Yang–Mills
theory, but in line with a recent study in QCD with twisted-mass Wilson fermions [6], there is no
enhancement in the electric mode in the transition region.

5. Summary and outlook

We have studied the superfluid and deconfinement transition lines in QC2D in the(µ,T ) plane.
We find that the superfluid transition temperature is remarkably insensitive toµ for the quark mass
we are using, while the deconfinement temperature is clearly decreasing asµ increases. At low
temperature, the low-momentum modes of both the electric and magnetic Landau-gauge gluon
propagator become suppressed relative to the (already infrared suppressed) vacuum propagator at
largeµ, with no qualitative differences between the two form factors found. At high temperature,
the static electric and magnetic propagators are found to exhibit very different behaviours, with a
strong suppression of the electric form factor and an enhancement of the magnetic form factor at
intermediateµ. We are in the process of extending these studies to smaller quark masses aswell
as finer lattice spacings. In a forthcoming publication we will also study the response of the quark
propagator toµ andT . This will enable us to directly confront the results from functional methods
for these quantities.
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