
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
9
2

Determination of Karsch Coefficients for 2-colour
QCD

Seamus Cotter∗
Department of Mathematical Physics, National University of Ireland Maynooth,
Maynooth, County Kildare, Ireland
E-mail: seamus.cotter@nuim.ie

Pietro Giudice
Universität Münster, Institut für Theoretische Physik, Münster, Germany
E-mail: p.giudice@uni-muenster.de

Simon Hands
Department of Physics, College of Science, Swansea University, Swansea, United
Kingdom
E-mail: s.hands@swansea.ac.uk

Jon-Ivar Skullerud
Department of Mathematical Physics, National University of Ireland Maynooth,
Maynooth, County Kildare, Ireland
E-mail: jonivar@thphys.nuim.ie

We give an update of results from two-colour, two-flavour QCD. Using a Wilson fermion
action we calculate thermodynamic quantities as a function of chemical potential µ.
Calculating the Karsch Coefficients non-perturbatively gives us access to the derivative
method. Compared to our previously published results, we have improved our analy-
sis leading to revised and more accurate estimates for the renormalised energy density,
pressure and the trace anomaly.

31st International Symposium on Lattice Field Theory LATTICE 2013
July 29 August 3, 2013
Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.http://pos.sissa.it/

mailto:seamus.cotter@nuim.ie
mailto:p.giudice@uni-muenster.de
mailto:s.hands@swansea.ac.uk
mailto:jonivar@thphys.nuim.ie


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
9
2
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1. Introduction

As part of a larger study on two-colour, two-flavour QCD, we use the derivative method
to calculate thermodynamic quantities, in particular the renormalised energy density. The
major stumbling block is the accurate calculation of the Karsch coefficients [1]. These are
defined as the derivative of input parameters with respect to measured observables. In
this case the input parameters are the gauge coupling β, the hopping parameter κ and
the input gauge and quark anisotropies γg and γq of our action S = SG +SQ +SJ . This
consists of a non-improved Wilson gauge and fermion action along with a diquark source
action which serves to lift the low lying eigenmodes of the Dirac operator:

SG =− β

Nc

 1
γg

∑
x,i<j

ReTrUij (x) +γg
∑
xi

ReTrUi0 (x)

 , (1.1)

SQ =
∑
x,α

[
ψ̄α (x)ψα (x) +γqκψ̄

α (x)(D0ψ)α (x)
]

+κ
∑
x,α,i

ψ̄α (x)(Diψ)α (x) , (1.2)

SJ = κj
∑
x

[
ψ2tr (x)Cγ5τ2ψ

1 (x)− ψ̄1 (x)Cγ5τ2ψ̄
2tr (x)

]
. (1.3)

We define βs = β
γg
, βt = γgβ, κs = κ and κt = γqκ. We then calculate the Karsch coefficients

non-perturbatively by measuring the lattice spacing as, the pion/rho meson mass ratio
M = mπ

mρ
, and the measured gauge ξg and quark ξq anisotropies on several ensembles of

anisotropic and isotropic lattices across a range of values for β, κ, γg and γq taken around
the central set β = 1.9, κ= 0.168 with γg = γq = 1, listed in Table 1. We define the average
anisotropy ξ+ = 1

2 (ξg + ξq) and the anisotropy mismatch ξ− = 1
2 (ξg− ξq), to ensure we are

working along a line of constant physics. As all thermodynamic quantities are extrapolated
to diquark source j = 0, the diquark term in the action plays no further role.

Further details about the initial setup are given in an earlier paper [2]. In that paper we
overlooked the quark number density term of the energy density which we include now.
A consequence of the inclusion of this term is that the energy density can be seen to rely
almost totally on this term as the fermionic and gluonic contributions are small and nearly
cancel. As a result the energy density becomes almost Karsch coefficient independent. This
behaviour was conjectured in an earlier paper [3]. We also calculate the pressure which
can be compared to results that used the integral method in [2] and the trace anomaly.

To calculate the spatial lattice spacing as, we use the static quark potential, and to calculate
the gauge anisotropy ξg we use the sideways potential [4]. For the pion/rho meson mass
ratio M = mπ

mρ
and the quark anisotropy ξq we use the meson dispersion. The results

are shown in Table 1 and Figures 1 and 2. Using these measurement results allows for
a four dimensional fit of the measured values for as, M , ξ+ and ξ−as a function of the
input parameters β, κ, γq and γg. Inverting the resulting 4×4 matrix gives us the Karsch
coefficients shown in Table 2 and 3.
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βs βt κs κt γg γq ξg ξq M = mπ
mρ

as (fm)
1.90 1.90 0.1680 0.1680 1.0 1.0 0.968+2

−2 1.035+8
−10 0.798+4

−9 0.178+4
−6

2.37 1.52 0.1680 0.1680 0.8 1.0 0.721+2
−2 0.999+8

−9 0.807+3
−3 0.177+4

−3
1.27 2.83 0.1680 0.1680 1.5 1.0 1.321+6

−5 1.278+21
−3 0.633+9

−12 0.125+3
−5

1.90 1.90 0.1800 0.1570 1.0 0.87 0.747+4
−4 0.875+24

−34 0.711+19
−14 0.107+2

−5
1.90 1.90 0.1470 0.1920 1.0 1.3 1.146+4

−4 1.513+15
−12 0.946+1

−1 0.229+7
−12

1.80 1.80 0.1740 0.1740 1.0 1.0 0.989+4
−3 1.028+16

−14 0.770+5
−6 0.177+5

−7
1.90 1.90 0.1685 0.1685 1.0 1.0 0.945+5

−5 1.020+9
−11 0.759+11

−13 0.153+7
−18

2.00 2.00 0.1620 0.1620 1.0 1.0 0.921+4
−5 0.992+10

−9 0.819+7
−6 0.166+1

−2
2.00 2.00 0.1630 0.1630 1.0 1.0 0.881+5

−5 1.008+9
−6 0.756+13

−7 0.148+1
−1

Table 1: Ensemble parameters and measured values for the anisotropies, mass ratio and lattice
spacing.

2. Improvements to the determination

Apart from minor alterations to fit ranges, one area where we immediately focused our
attention was the meson dispersion. Two of the columns of the 4× 4 matrix consist of
results from the meson dispersion, any minor improvement could potentially give a large
overall improvement. For the mass fits at zero momentum, this improvement came from a
tightening of the fit range. For the meson dispersion after a similar analysis and study of
the fit ranges an improvement was also seen. On top of this we also switched from using
the continuum definition of the dispersion relation:

a2
tE

2 (p) = a2
tm

2
π + p2

a2
sξ

2
q

, where p2 = p2
x+p2

y +p2
z, (2.1)

to the lattice version following [5]:

p2 = 4
a2

{
sin2

(
pxa

2

)
+ sin2

(
pya

2

)
+ sin2

(
pxa

2

)}
, (2.2)

This takes into account the discrete values of the momentum on the lattice. These two
improvement resulted in lower error bars across the board, which can be seen in the latest
results for the Karsch coefficients below. The improved results for the Karsch coefficients
(Table 3) show a reduction in the size of errors from the earlier determination (Table 2).

ci
∂ci
∂ξ+

a∂ci∂a M ∂ci
∂M

∂ci
∂ξ−

γg 0.90+0.04
−0.14 −0.51+0.19

−0.10 0.13+0.32
−0.58 1.4+1.2

−1.6
γq 0.13+0.40

−0.05 0.22+0.12
−0.70 −0.55+2.11

−0.29 −2.9+5.7
−0.6

β 0.59+0.24
−1.37 −1.4+2.3

−0.5 3.7+1.9
−7.0 8+8

−19
κ −0.05+0.07

−0.02 0.08+0.02
−0.09 −0.22+0.35

−0.08 −0.39+0.88
−0.23

Table 2: Original Karsch coefficients determination.
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ci
∂ci
∂ξ+

a∂ci∂a M ∂ci
∂M

∂ci
∂ξ−

γg 0.79+0.04
−0.08 −0.48+0.09

−0.14 0.08+0.23
−0.08 1.04+0.46

−0.15
γq 0.39+0.02

−0.03 −0.03+0.04
−0.04 0.28+0.09

−0.08 −0.47+0.23
−0.15

β −0.27+0.08
−0.19 −0.86+0.22

−0.36 1.49+0.75
−0.19 1.94+1.69

−0.29
κ −0.01+0.01

−0.01 0.05+0.02
−0.02 −0.12+0.14

−0.05 −0.11+0.02
−0.11

Table 3: Improved Karsch coefficients determination.
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Figure 1: Static quark potential (left) and Sideways potential results (right) are shown for the
central set and the anisotropic sets.
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Figure 2: The pion dispersion (left) and the effective mass (right) of the pion (empty) and rho
(shaded) mesons for the central set and the anisotropic sets.
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3. Equation of State

The partial derivatives must be taken with all other physical parameters fixed, which means
the physical quark mass, and therefore the mass ratio M = mπ

mρ
are kept fixed. The energy

density can be derived using the standard thermodynamic relations:

Ω = E−TS−µqNq =−pV =−T lnZ, (3.1)

p= ∂ (T lnZ)
∂V

∣∣∣∣
T
, ε= E

V

∣∣∣∣
V
,S = ∂ (T lnZ)

∂T

∣∣∣∣
V
, nq = Nq

V
= 1
V

∂ (T lnZ)
∂µ

, (3.2)

which gives us

ε= εg +εq +µqnq =−T
V

〈
ξ
∂S

∂ξ

〉
+µqnq,

= 3
N3
s a

3
sNtatNc

[
β

γg
〈�s〉

(
1
β

∂β

∂ξ+ −
1
γg

∂γg
∂ξ+

)
+βγg 〈�t〉

(
1
β

∂β

∂ξ+ + 1
γg

∂γg
∂ξ+

)]

− 1
N3
s a

3
sNtat

[
γqκ

(
1
γq

∂γq
∂ξ+

)〈
ψ̄D0ψ

〉
−κ

(1
κ

∂κ

∂ξ+

)(
4NcNf +

〈
ψ̄ψ
〉)]

+µqnq. (3.3)

The trace anomaly and pressure follow a similar procedure using the respective Karsch
coefficients ( or β functions) :

ε−3p = T

V

〈
a
∂S

∂a

〉
, p=− T

3V

[〈
a
∂S

∂a

〉
+
〈
ξ
∂S

∂ξ

〉]
+ µnq

3 . (3.4)

The angled brackets are vacuum subtracted using results from an ensemble with volume
163×24, ja= 0.0 and µ= 0.0. We calculate the energy density, quark number density, trace
anomaly and pressure on 3 volumes 123×24, 163×12 and 163×8, which translate to 47MeV,
94MeV and 141MeV respectively. On all three volumes we measure the thermodynamic
quantity in question at diquark source ja= 0.04 and ja= 0.02 and extrapolate to zero.

For the energy density, trace anomaly and the pressure we also repeated the analysis with
100 bootstrap sample values from the Karsch coefficient determination to estimate their
uncertainty, shown as shaded symbols and dashed error bars. The quark number density
(Fig 3, left) is shown to highlight the dominance of the quark number density term in both
the energy density and the pressure. The energy density (Fig 3, right) is seen to be almost
oblivious to the error coming from the Karsch coefficient determination except for small
µ. The quark number density shown in Figure 3 is normalised by ncontSB and to allow for
comparison with a previous calculation using the integral method (semi-filled symbols) [2],
the pressure shown in Figure 4 is normalised by pcontSB :

ncontSB =NfNc

(
µT 2

3 + µ3

3π2

)
, pcontSB = NfNc

12π2

(
µ4 + 2π2µ2T 2 + 7π4

15 T
4
)
. (3.5)
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Figure 3: Quark number density (left), and total energy density (right) as a function of chemical
potential µ. Inset is the fermionic (bold) and gluonic contributions which come with a Karsch
coefficient prefactor. The shaded symbols in the main plot and the dashed error bars in the inset
denote the Karsch coefficient determination uncertainty.
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Figure 4: Trace Anomaly (left) and pressure (right) as a function of chemical potential µ. The
shaded symbols and dashed error bars denote the uncertainty coming from the Karsch coefficients
determination. For the pressure, the results calculated using the integral method are also shown
(semi-filled symbols).

The trace anomaly (Fig 4, left) remains positive, slowly rising at large µ. As the trace
anomaly is closer to zero in size, the uncertainty in the Karsch coefficients is more apparent.
The pressure (Fig 4, right) is somewhat more sensitive to the difference in values of the
Karsch coefficients at small µ. The values generated on the 123× 24 volume, agree well
with the results from the integral method. As the quark number density does not require
the Karsch coefficients it can be seen that at higher chemical potential µ, both the pressure
and energy density are effectively Karsch coefficient independent.
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4. Summary and Outlook

This study demonstrates the feasibility of the derivative method using non-perturbatively
determined Karsch coefficients. Several improvements are still possible. Our current static
potential code doesn’t scale well, and with new ensembles on larger volumes with finer
lattice spacings coming online soon, a newer more efficient plan of attack is needed. At
the moment that looks to be the W0 scale from the Wilson flow [6] which we are currently
working on changing to handle SU (2) configurations rather than the SU (3) ones it was
designed for. This would also in principle replace the sideways potential code with which
we used to calculate ξg, although possessing alternative methods and codes to measure the
same quantity allows to control systematic uncertainties.
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