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The sign problem and Abelian lattice duality
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problem for both analytic methods and computer simulations. Explicit duality relations are given
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The sign problem is a fundamental issue in Euclidean lattice field theories at non-zero chemical
potential, manifesting as complex weights in the path integral [1 – 3]. We have recently found a
prescription that maps a large class of Abelian lattice models with complex weights to dual models
with real weights [4]. The dual form of these models can then be studied using familiar analytical
and computational methods. The models in this class possess a generalized PT symmetry. In
recent years, substantial progress has been made in the study of models with this symmetry [5 –
7]. The methods developed here are applicable to models with a non-zero chemical potential or a
Minkowski-space electric field, which also has a sign problem [8, 9]. The utility of lattice duality
for the sign problem was shown some time ago [10 – 12], and has recently been systematically
studied [13 – 18] in an intermediate form, particularly in connection with the worm algorithm [19].
The explicit duality relations we derive here based on generalized PT symmetry represent a
solution to the sign problem for Abelian lattice models over a wide range of parameter space. The
dual forms generalize the well-known chiral Z(N) and Frenkel-Kontorova models and typically
have a rich phase structure with spatially-modulated phases [20 – 24]. Such phases are also known
to occur in (1+ 1)-dimensional fermionic models [25 – 30], and would also appear naturally in
a quarkyonic phase [31, 32]. However, spatially-modulated phases are not special to fermions at
finite density, as shown by a continuum model of (1+1)-dimensional QCD with heavy particles
where the statistics of the particles is immaterial [33, 34, 7]. The appearance of spatially-modulated
phases is natural in PT -symmetric models [34, 7].

In the models discussed here, the fundamental fields are elements z= exp(iθ) of Z(N) or U(1).
The lattice actions are complex, but invariant under the simultaneous application of the operators
C and T , where C is a linear charge conjugation operator that takes θ to −θ , and hence z to
z∗ ,and T is time reversal implemented as complex conjugation. Thus these models have C T

symmetry as a generalized PT symmetry. In a lattice model, this symmetry ensures that the
eigenvalues of the transfer matrix are either real or occur in complex conjugate pairs. The presence
of complex eigenvalues gives rise to a rich phase structure not possible with Hermitian transfer
matrices [33, 34, 7].

We begin with duality for d = 2 Z(N) models with a chemical potential using the methods of
[35] for the Villain, or heat kernel, action. Defining the site-based spin variables as exp(2πim(x)/N),
with m(x) an integer between 0 and N, the partition function is given by

Z[J,µδν ,2] = ∑
m

∑
nν

exp

[
−J

2 ∑
x,ν

(
2π

N
∂νm(x)− iµδν2−2πnν (x)

)2
]

(1)

where ∂νm(x) ≡ m(x+ ν̂)−m(x) and the sum over link variables nν(x) ∈ Z ensures periodicity.
Using the properties of the Villain action, we can write

Z[J,µδν ,2] = (2πJ)−dV/2
∑
m

∑
pν

exp

[
− 1

2J ∑
x,ν

p2
ν (x)+ i∑

x,ν
pν (x)

(
2π

N
∂νm(x)− iµδν2

)]
(2)

where V is the number of sites on the lattice such that dV is the number of links. Summation over
the m(x)’s give a set of delta function constraints:
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Z[J,µδν ,2] = (2πJ)−dV/2
∑
pν

exp

[
− 1

2J ∑
x,ν

p2
ν (x)+∑

x,ν
p2 (x)µ

]
∏

x
δ∂ ·p,0(N) (3)

where the notation in the Kronecker delta function indicates ∂ · p = 0 modulo N. We introduce a
dual bond variable p̃ρ (X) associated with the dual lattice via pν (x) = ενρ p̃ρ (X) and note that the
constraint on pν is solved by p̃ρ (X) = ∂ρ q̃(X)+Nr̃ν (X). We have

Z[J,µδν ,2] = (2πJ)−dV/2
∑
q̃,r̃ν

exp

[
− 1

2J ∑
x,ν

(
∂ρ q̃(X)+Nr̃ν (X)

)2
+µ ∑

x,ν
(∂1q̃(X)+Nr̃1 (X))

]
(4)

which leads to

Z[J,µδν ,2] = (2πJ)−dV/2 exp
[
+

V
2

Jµ
2
]

Z[
N2

4π2J
,−i

2πJµ

N
δν ,1] (5)

The generalized duality here is

J → J̃ =
N2

4π2J
(6)

µδν ,2 → µ̃δν ,1 =−i
2πJµ

N
δν ,1. (7)

The dual of the original model, which has a complex action, is a chiral Z(N) model with
a real action; such models have been extensively studied in two and three dimensions [20 – 23].
It is convenient to define a parameter ∆ = Jµ; the essential characteristics can be understood by
considering the range 0≤ ∆≤ 1 [21]. In the limit J̃→∞, i.e., J→ 0, configurations with ∂ρ q̃(X) =

0 are favored for ∆ < 1/2; this leads to an extension of the ordered phase of the dual model at ∆ = 0
to non-zero ∆. Beyond ∆=1/2, configurations with ∂ρ q̃(X) 6= 0 are favored in the same limit. In two
dimensions, this corresponds to phases with a nonzero value of the current coupled to µ. Similar
behavior will occur in a broad class of Z(N) models, generalizable to any dimension. In the specific
case of a d = 2 chiral Z(N) model, an incommensurate spatially-modulated phase is found in the
J̃−∆ plane.

In the interesting case of the Z(N) Villain Higgs model in d = 3, the partition function has the
form

Z[J,K,µν ,Gνρ ] = ∑
m

∑
nν

∑
pν

∑
qνρ

exp

[
−J

2 ∑
x,ν

(
2π

N
∂νm(x)− 2π

N
pν − iµν −2πnν (x)

)2
]

×exp

[
−K

2 ∑
x,ν>ρ

(
2π

N

(
∂ν pρ −∂ρ pν

)
− iGνρ −2πqνρ

)2
]

(8)

where µν is a constant imaginary background vector gauge field that generalizes the chemical
potential, and Gνρ is a constant imaginary background field. This model is dual under

J → J̃ =
N2

4π2K
(9)

K → K̃ =
N2

4π2J
(10)
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Figure 1: Partial phase diagram for the chiral spin model showing the first two of N homogeneous phases
(SC-0 and SC-1) and the region where spatially modulated phases (SM) are found.

µν → µ̃ν =−i
2πK

N
ενρσ Gρσ (11)

Gνρ → G̃νρ =−i
2πJ
N

ενρσ µσ (12)

generalizing the well-known self-duality of the d = 3 Abelian Higgs system. The d = 3 Z(N) gauge
field is dual to the d = 3 chiral Z(N) spin model, which has been extensively studied [22, 23]. In the
strong-coupling limit where K is small and thus J̃ large, the response of the system to an external
real (Minkowski-space) electric field reveals an infinite number of commensurate inhomogeneous
phases separating the disordered, confining phase of the gauge theory from a phase with a constant
induced field.

It is now easy to see how these results generalize to a large class of Z(N) models, classified by
their dual forms. Models dual to a Z(N) spin system will have N weak-coupling phases. In the limit
J̃→ ∞, there are transitions between these phases at half-integer values of ∆ where the observable
coupled to ∆ jumps. These phases are separated in the J̃−∆ plane by spatially-modulated phases.
The precise behavior of these spatially-modulated phases depends on both the value of N and the
dimensionality d. In four dimensions, the dual of the chiral Z(N) model is a less-familiar Z(N)

model where the elementary variables are based on plaquettes and the interactions are constructed
using cubes. Figure 1 shows a partial phase diagram for the chiral spin model valid for all N and
d ≥ 2. Moving to chiral Z(N) gauge models, we know that in d = 3, the dual form will be a spin
system with a non-zero chemical potential leading to a complex action. In d = 4, chiral Z(N)

gauge models are dual to gauge theories with real Minkowski-space electric fields. It is obvious
that there will again be N phases for large K̃, controlled by the parameter Γ = KG, analogous to
∆ . Mean field theory arguments suggest that spatially modulated phases will also be found in this
class of models. However, the subtleties associated with gauge degrees of freedom indicate the
need for lattice simulations to confirm this behavior. This is especially true for Higgs models, due
to charge-screening effects. One case of particular interest is the four-dimensional Higgs model
with a chemical potential coupled to the Z(N) scalars. The dual of this model will have elementary
link and plaquette variables with plaquette and cube interactions [17].

The duality between C T -symmetric interactions and chiral interactions is not restricted to the
Villain action, but holds for more general actions [4]. There are large regions of parameter space for
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which all the dual weights are positive; such models may be simulated by standard computational
methods such as the Metropolis algorithm, and familiar theoretical tools such as mean field theory
may be applied. This represents a solution of the sign problem for a large class of Abelian lattice
models.

Further insight can be obtained from models based on U(1). Here we apply the duality tech-
niques pioneered by Jose et al. [36]. The partition function of the two-dimensional XY model with
an imaginary chemical potential term has the form

Z[K,µδν ,2] =
∫

S1
[dθ ]∑

nν

exp

[
−K

2 ∑
x,ν

(∂νθ (x)− iµδν2−2πnν (x))
2

]
. (13)

Again using the properties of the Villain action, we can apply standard duality techniques [4],
finally arriving at

Z =
∫

R
[dφ (X)]e−∑X [∑ν (∇ν φ(X))2/2K+µ∇1φ(X)]

∑
{m(X)}∈Z

e2πim(X)φ(X). (14)

If we keep only the m = 1 contributions, we have a lattice sine-Gordon model

Z =
∫

R
[dφ (X)]exp

[
−∑

X ,µ

1
2K

(
∇µφ (X)

)2−∑
X

µ∇1φ (X)+∑
X

2ycos(2πφ (X))

]
(15)

with y = 1. This will be recognized as a two-dimensional lattice version of the Frenkel-Kontorova
model, a sine-Gordon model with an additional term proportional to µ . For each fixed value of
X2, the term ∑X ∇1φ (X) counts the number of kinks on that slice: The particles in the original
representation manifest as lattice kinks in the dual representation. This generalizes to other lattice
models based on U(1), and can also be applied to Z(N) models realized by explicit breaking of
U(1) down to Z(N). From a continuum point of view, this model can be further mapped to a
massive Thirring model with µ coupling to the conserved fermion current.

All of the Abelian lattice models in the C T -symmetric class studied here have real dual rep-
resentations. These models typically exhibit a rich phase structure in regions of parameter space
where the dual weights are positive. The properties of these models can be studied in the dual
representation with both computational and analytical tools. Spatially-modulated phases can be
detected in simulations using appropriate two-point functions; analytical studies combined with
known results from condensed matter physics can provide valuable guidance. Patel has recently
suggested that an oscillatory signal might appear in baryon number correlators in heavy ion colli-
sions at RHIC and the LHC [37, 38]. We believe that the complex phase structure seen in Abelian
systems is likely to appear in non-Abelian systems. As an intermediate step, application of duality
to an effective Abelian model associated with the reduction of SU(N) to U(1)N−1 [39 – 42] appears
possible with the results developed here.
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