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We study the Anderson-type localisation-delocalisation transition found previously in the QCD

Dirac spectrum at high temperature. Using high statistics QCD simulations withNf = 2+ 1

flavours of staggered quarks, we discuss how the change in thespectral statistics depends on the

volume, the temperature and the lattice spacing, and we speculate on the possible universality of

the transition from Poisson to Wigner-Dyson in the spectralstatistics. Moreover, we show that the

transition is a genuine phase transition: at the mobility edge, separating localised and delocalised

modes, quantities characterising the spectral statisticsbecome non-analytic in the thermodynamic

limit. Using finite size scaling we also determine the critical exponent of the correlation length,

and we speculate on possible extensions of the universalityof Anderson transitions.
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1. Introduction

It is well known that the properties of the low-lying modes of the Dirac operator are intimately
related to the behaviour of QCD under chiral symmetry transformations, as clearly exemplified by
the Banks-Casher relation [1]. In particular, it has been realised in recent years that their localisa-
tion properties change completely across the chiral transition/crossover.While below the critical
temperatureTc all the eigenmodes are delocalised, it has been shown [2, 3, 4, 5] that above Tc

the low-lying ones, up to some critical pointλc, become localised; modes aboveλc remain delo-
calised. Initially the evidence for this was mainly obtained in thequenchedapproximation and/or
for theSU(2) gauge group, but recently this scenario has been demonstrated in full QCD [5], by
studying the spectrum of the staggered Dirac operator in numerical simulationsof lattice QCD
with Nf = 2+1 flavours of quarks at physical masses [6]. An improved study, with much higher
statistics and larger lattice volumes, has been presented at this conference[7].

The presence of a transition from localised to delocalised modes in the spectrum, as the one
found in QCD aboveTc, is a well known phenomenon in condensed matter physics, and it repre-
sents the main feature of the celebrated Anderson model [8] in three dimensions. The Anderson
model aims at a description of electrons in a “dirty” conductor, by mimicking the effect of impuri-
ties through random interactions. In its lattice version, the model is obtained by adding a random
on-site potential to the usual tight-binding Hamiltonian,

H = ∑
n

εn|n〉〈n|+∑
n

3

∑
µ=1

|n+ µ̂〉〈n|+ |n〉〈n+ µ̂| , (1.1)

where|n〉 denotes a state localised on the lattice siten, andεn are random variables drawn from
some distribution, whose widthW measures the amount of disorder, i.e., of impurities in the system.
The phase diagram of this model is sketched in Fig. 1. While forW = 0 all the eigenmodes are
delocalised, localised modes appear at the band edge as soon as the random interaction is switched
on. The critical energyEc separating localised and delocalised modes is called “mobility edge”,
and its value depends on the amount of disorder,Ec = Ec(W). AsW increases,Ec moves towards
the center of the band, and above a critical disorderWc all the modes become localised. From the
physical point of view, this signals a transition of the system from metal to insulator.

In Fig. 1 we also sketch a schematic phase diagram for QCD. Here the role of disorder is
played by the temperature, while the energy is replaced by the eigenvalue ofthe Dirac operator.
Localised modes are present in the low end of the spectrum aboveTc, up to the “mobility edge”
λc(T). Around the critical temperatureλc vanishes [5], and belowTc all the modes are extended.

In both models, localised modes appear where the spectral density is small. One then expects
that they are not easily mixed by the fluctuations of the random interaction, which in turn suggests
that the corresponding eigenvalues are statistically independent, obeyingPoisson statistics. On the
other hand, eigenmodes remain extended in the region of large spectral density also in the presence
of disorder, and so one expects them to be basically freely mixed by fluctuations. The correspond-
ing eigenvalues are then expected to obey the Wigner-Dyson statistics of Random Matrix Theory
(RMT). This connection between localisation of eigenmodes and eigenvaluestatistics provides a
convenient way to detect the localisation/delocalisation transition and study its critical properties.
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Figure 1: Schematic phase diagram of the 3D Anderson model (left) and QCD (right) in the disor-
der/eigenvalue plane.

The transition from Poisson to RMT behaviour in the local spectral statistics ismost simply
studied by means of the so-called unfolded level spacing distribution (ULSD). Unfolding con-
sists essentially in a local rescaling of the eigenvalues to have unit spectraldensity throughout the
spectrum. The ULSD gives the probability distribution of the difference between two consecu-
tive eigenvalues of the Dirac operator normalised by the local average level spacing. The ULSD
is known analytically for both kinds of behaviour: in the case of Poisson statistics it is a simple
exponential, while in the case of RMT statistics it is very precisely approximatedby the so-called
“Wigner surmise” for the appropriate symmetry class, which for QCD is the unitary class,

PPoisson(s) = e−s, PRMT(s) =
32
π2s2e−

4
π s2

. (1.2)

Rather than using the full distribution to characterise the local spectral statistics, it is more practical
to consider a single parameter of the ULSD. Any such quantity, having different values for Poisson
and RMT statistics, can be used to detect the Poisson/RMT transition. In our study, we used the
integrated ULSD and the second moment of the ULSD,

Iλ =
∫ s0

0
dsPλ (s) , s0 ≃ 0.508, 〈s2〉λ =

∫ ∞

0
dsPλ (s)s2 , (1.3)

defined locally in the spectrum. The choice ofs0 was made in order to maximise the difference
between the Poisson and RMT predictions, namelyIPoisson≃ 0.398 andIRMT ≃ 0.117; as for the
second moment, the predictions are〈s2〉Poisson= 2 and〈s2〉RMT = 3π/8.

2. Numerical results

The results presented here are based on simulations of lattice QCD using a Symanzik-improved
gauge action and 2+1 flavours of stout smeared staggered fermions, with quark masses at phys-
ical values [6]. We used a lattice of fixed temporal extensionNt = 4 at β = 3.75, corresponding
to lattice spacinga = 0.125 fm and physical temperatureT = 394 MeV≃ 2.6Tc. For different
choices of spatial sizeL = 24,28,32,36,40,44,48,56 in lattice units, we collected large statistics
for eigenvalues and eigenvectors of the staggered Dirac operator in therelevant spectral range - see
Ref. [7] for more details. Here and in the following the eigenvaluesλ are expressed in lattice units.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
1
3

Critical behaviour in the QCD Anderson transition Matteo Giordano

0.15

0.2

0.25

0.3

0.35

0.4

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36

I
λ

λ

L

Poisson

RMT

24
32
40
48
56

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36

〈s
2
〉 λ

λ

LPoisson

RMT

24
32
40
48
56

Figure 2: Integrated ULSD (left) and second moment of the ULSD (right), computed locally along the
spectrum, for several lattice sizes. Here∆λ = 3·10−3.

Unfolding was done by ordering all the eigenvalues obtained on all the configurations (for a given
volume) according to their magnitude, and replacing them by their rank orderdivided by the total
number of configurations. We then computed locally the integrated ULSD and the second moment
of the ULSD, by dividing the spectrum in small bins of size∆λ , computing the observables in each
bin, and assigning the resulting value to the average value ofλ in each bin. We used several values
for ∆λ , ranging from 1·10−3 to 6·10−3.

In Fig. 2 we show the integrated ULSDIλ and the second moment of the ULSD〈s2〉λ , for
several values of the spatial volume. A transition from Poisson to RMT is clearly visible, and
moreover it gets sharper and sharper as the volume of the lattice is increased. This suggests that
the transition becomes a true phase transition in the thermodynamic limit.

3. Finite size scaling

To check if the Poisson/RMT transition in the spectral statistics (i.e., the localisation/deloca-
lisation transition) is a genuine, Anderson-type phase transition, we have performed a finite size
scaling analysis, along the lines of Refs. [11, 12, 13]. The Anderson transition is a second-order
phase transition, with the characteristic length of the systemξ∞ diverging at the critical pointλc

like ξ∞(λ ) ∼ |λ −λc|
−ν . To determine the critical exponentν and the critical pointλc, one picks

a dimensionless quantityQ(λ ,L), measuring some local statistical properties of the spectrum, and
having different thermodynamic limits on the two sides of the transition (and possibly at the critical
point), i.e.,

lim
L→∞

Q(λ ,L) =











QPoisson λ < λc (localised),

Qc λ = λc (critical),

QRMT λ > λc (delocalised).

(3.1)

As the notation suggests,Q(λ ,L) is computed on a lattice of linear sizeL. For large enough volume,
and close to the critical point, finite size scaling suggests that the dependence of Q on L is of the
form Q(λ ,L) = f (L/ξ∞(λ )). As Q(λ ,L) is analytic inλ for any finiteL, we must have

Q(λ ,L) = F(L1/ν(λ −λc)) , (3.2)

with F analytic. Here we have assumed that corrections to one-parameter scalingcan be neglected.
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Figure 3: Dependence of the fitted value ofν and corresponding relative error as a function of the number
of termsnmax, in the case ofLmin = 36, ∆λ ·103 = 1.5 andw ·102 = 2.8 (left). Dependence of the fitted
value ofν on the bin size∆λ for the smallest fitting range (center) and on the widthw of the fitting range
for the smallest bin size (right). HereLmin = 36.

If one determinesλc and ν correctly, the numerical data forQ(λ ,L) obtained for different
lattice sizes should collapse on a single curve, when plotted against the scaling variableL1/ν(λ −

λc). We then proceeded as follows: expanding the scaling functionF in powers ofλ −λc, one gets

Q(λ ,L) =
∞

∑
n=0

FnLn/ν(λ −λc)
n . (3.3)

By truncating the series to somenmax and performing a fit to the numerical data, using several
volumes at a time, one can then determineν andλc, together with the first few coefficientsFn. For
our purposes, the best quantity turned out to be the integrated ULSDIλ . Our fitter was based on
the MINUIT library [9]. Statistical errors were determined by means of a jackknife analysis. To
check for finite size effects, we repeated the fit using only data from lattices of sizeL ≥ Lmin for
increasingLmin.

Systematic effects due to the truncation of the series for the scaling function,Eq. (3.3), are
controlled by including more and more terms in the series, and checking how theresults change.
In order to circumvent the numerical instability of polynomial fits of large order, we resorted to
the technique of constrained fits [10]. The basic idea of constrained fits isto use the available
information to constrain the values of the fitting parameters. In our case, theyare needed only to
avoid that the polynomial coefficients of higher order take unphysical values. One then checks the
convergence of the resulting parameters and of the corresponding errors as the number of terms
is increased. After convergence, the resulting errors include both statistical effects and systematic
effects due to truncation [10].

To set the constraints, we shift and rescaleF as follows,F̃(x) = (F(x)−FRMT)/(FPoisson−

FRMT), so thatF̃ interpolates between 1 (localised/Poisson region) and 0 (delocalised/RMT region).
The data indicate that̃F changes rapidly, monotonically and almost linearly between 1 and 0 over a
rangeδx. Any reasonable definition ofδx has then to satisfy 1+ F̃1δx≃ 0. Moreover,δx provides
a reasonable estimate of the radius of convergenceρ of the series. Furthermore, it is known that
(F̃n+1/F̃n)ρ → 1 asn → ∞, and so we expect̃Fnρn ∼ 1 (at least for largen). One then finds that
F̃n/(−F̃1)

n is expected to be of order 1. This constraint was imposed rather loosely, by asking
F̃n/(−F̃1)

n to be distributed according to a Gaussian of zero mean and widthσ = 10 forn≥ 4. We
did not impose any constraint on the coefficientsFn with n< 4, as well as onν andλc. The results
of the constrained fits converge rather rapidly asnmax is increased, see Fig. 3. We went as far as
nmax= 9, and we used the corresponding results for the following analyses.
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Figure 4: Dependence of the fitted value ofν , averaged over 2.6≤ w ·102 ≤ 3.0 and 1.0≤ ∆λ ·103 ≤ 3.0,
on Lmin. The values ofν obtained in the three symmetry classes of the 3D Anderson model (symplectic,
νS= 1.375(16) [16], unitaryνU = 1.43(4) [14] and orthogonalνO = 1.57(2) [15]) are shown for comparison
together with their errors (left). Plot ofIλ against〈s2〉λ for several lattice sizes (right).

The effects of the choice of bin size and fitting range were checked by varying the bin size
∆λ and the widthw of the fitting range, which was centered approximately at the critical point.
The results show a slight tendency ofν to decrease as∆λ is decreased, but it is rather stable for
∆λ ·103 . 3. There is also a slight tendency ofν to increase asw is decreased, becoming rather
stable forw ·102 . 3. See Fig. 3. To quote a single value forν , we averaged the central values
obtained for 1≤ ∆λ ·103 ≤ 3 and 2.6≤ w ·102 ≤ 3. As the error is also rather stable within these
ranges, we quote its average as the final error onν for each choice ofLmin. We have checked that
other prescriptions (e.g., extrapolating to vanishingw and/or∆λ , or changing – within reasonable
bounds – the ranges ofw and∆λ over which the final average is performed) give consistent results
within the errors.

Concerning finite size effects, the fitted value ofν increases withLmin, stabilising around
Lmin = 36, see Fig. 4. This signals that our smallest volumes are still too small for one-parameter
scaling to work, and that finite size corrections are still important there. On the other hand, as the
difference between the values obtained withLmin = 36 andLmin = 40 is much smaller than the
statistical error, one-parameter scaling works fine for our largest volumes.

The value for the critical pointλc ≃ 0.336 was obtained through the same procedure described
above. As a function ofLmin, the fitted value ofλc shows no systematic dependence, and different
choices ofLmin give consistent values within the errors.

Our result for the critical exponentν = 1.43(6) is compatible with the result obtained for the
three-dimensional unitary Anderson modelνU = 1.43(4) [14]. This strongly suggests that the tran-
sition found in the spectrum of the Dirac operator aboveTc is a true Anderson-type phase transition,
belonging to the same universality class of the three-dimensional unitary Anderson model.

4. Shape analysis

From the point of view of random matrix models, Fig. 2 shows that the local spectral statis-
tics along the spectrum are described by one-parameter families of models, with spectral statistics
interpolating between Poisson and Wigner-Dyson along some path in the space of probability dis-
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tributions. To check if the appropriate one-parameter family depends on thesize of the lattice,
one can simply plot a couple of parameters of the ULSD against each other (thus projecting the
path onto a two-dimensional plane in the space of probability distributions): if points are seen to
collapse on a single curve, irrespectively ofL, then the intermediate ULSDs lie on a universal path
in the space of probability distributions [17].

In Fig. 4 we showIλ and 〈s2〉λ plotted against each other for several volumes, and we see
that they indeed lie on a single curve. AsL is increased, points corresponding to a given value
of λ flow towards the Poisson or RMT “fixed points”, while flowing away from anunstable fixed
point corresponding toλc, where a different universality class for the spectral statistics is expected.
Similar plots made by changingT and/ora are compatible with a similar universality of the path,
but statistical errors are still too large to reach a definitive conclusion.

The transition from Poisson to Wigner-Dyson behaviour in finite volume is therefore expected
to be described by a universal one-parameter family of random matrix models[18]. Comparing
with analogous results for the Anderson model, it turns out that the spectral statistics at the critical
point in the two models are compatible [18].
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