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We study the Anderson-type localisation-delocalisatiamgition found previously in the QCD
Dirac spectrum at high temperature. Using high statisti€@OGimulations withN; = 2+ 1
flavours of staggered quarks, we discuss how the change Bp#utral statistics depends on the
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limit. Using finite size scaling we also determine the catiexponent of the correlation length,
and we speculate on possible extensions of the universdilinderson transitions.
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1. Introduction

Itis well known that the properties of the low-lying modes of the Dirac ojpei@e intimately
related to the behaviour of QCD under chiral symmetry transformationseadycexemplified by
the Banks-Casher relation [1]. In particular, it has been realised @ntgears that their localisa-
tion properties change completely across the chiral transition/crosstiréle below the critical
temperaturel; all the eigenmodes are delocalised, it has been shown [2, 3, 4, 5] ttwe &b
the low-lying ones, up to some critical poih¢, become localised; modes aboVgeremain delo-
calised. Initially the evidence for this was mainly obtained inglaenchedapproximation and/or
for the SU(2) gauge group, but recently this scenario has been demonstrated in DI[R)Cby
studying the spectrum of the staggered Dirac operator in numerical simulatidatice QCD
with Ny = 2+ 1 flavours of quarks at physical masses [6]. An improved study, withhrhigher
statistics and larger lattice volumes, has been presented at this configfience

The presence of a transition from localised to delocalised modes in thewspeets the one
found in QCD abovédl, is a well known phenomenon in condensed matter physics, and it repre-
sents the main feature of the celebrated Anderson model [8] in three dimendibe Anderson
model aims at a description of electrons in a “dirty” conductor, by mimicking tleeteof impuri-
ties through random interactions. In its lattice version, the model is obtaineddaygaa random
on-site potential to the usual tight-binding Hamiltonian,

3
H=3 &l +3 3 [+ @)+ Al (1.1)
n n u=

where|n) denotes a state localised on the lattice sjtande, are random variables drawn from
some distribution, whose widi measures the amount of disorder, i.e., of impurities in the system.
The phase diagram of this model is sketched in Fig. 1. Whil&No« O all the eigenmodes are
delocalised, localised modes appear at the band edge as soon as time iredaction is switched

on. The critical energ¥. separating localised and delocalised modes is called “mobility edge”,
and its value depends on the amount of disorgr: Ec(W). AsW increasesk: moves towards

the center of the band, and above a critical disoWleall the modes become localised. From the
physical point of view, this signals a transition of the system from metal tddtmu

In Fig. 1 we also sketch a schematic phase diagram for QCD. Here thefrdisooder is
played by the temperature, while the energy is replaced by the eigenvatlie Dirac operator.
Localised modes are present in the low end of the spectrum algpup to the “mobility edge”
Ac(T). Around the critical temperaturk: vanishes [5], and belowi; all the modes are extended.

In both models, localised modes appear where the spectral density is smathédrexpects
that they are not easily mixed by the fluctuations of the random interactiaohwhturn suggests
that the corresponding eigenvalues are statistically independent, oligjigspn statistics. On the
other hand, eigenmodes remain extended in the region of large specsayadso in the presence
of disorder, and so one expects them to be basically freely mixed by ftictisaThe correspond-
ing eigenvalues are then expected to obey the Wigner-Dyson statisticmdbRaVatrix Theory
(RMT). This connection between localisation of eigenmodes and eigensttistics provides a
convenient way to detect the localisation/delocalisation transition and studititalgroperties.
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Figure 1. Schematic phase diagram of the 3D Anderson model (left) a@® @ight) in the disor-
der/eigenvalue plane.

The transition from Poisson to RMT behaviour in the local spectral statisti®$t simply
studied by means of the so-called unfolded level spacing distribution (J)LSBfolding con-
sists essentially in a local rescaling of the eigenvalues to have unit spdetsity throughout the
spectrum. The ULSD gives the probability distribution of the difference betwtwo consecu-
tive eigenvalues of the Dirac operator normalised by the local averagedpacing. The ULSD
is known analytically for both kinds of behaviour: in the case of Poissdissts it is a simple
exponential, while in the case of RMT statistics it is very precisely approxinatdde so-called
“Wigner surmise” for the appropriate symmetry class, which for QCD is thiarynclass,

32 4
Phoisso§) =€ %, Prur(s) = 55 1. (12)

Rather than using the full distribution to characterise the local spectratistisis more practical
to consider a single parameter of the ULSD. Any such quantity, havingeliffealues for Poisson
and RMT statistics, can be used to detect the Poisson/RMT transition. Iruoly; sve used the
integrated ULSD and the second moment of the ULSD,

IA:/OSOdsa(s), s~ 0,508, <32>,\:'/owdsa(s)sz, (1.3)

defined locally in the spectrum. The choicessfwas made in order to maximise the difference
between the Poisson and RMT predictions, namglyson~ 0.398 andirmt ~ 0.117; as for the
second moment, the predictions @s)poisson= 2 and(s?)rmt = 371/8.

2. Numerical results

The results presented here are based on simulations of lattice QCD usimgaz-improved
gauge action and-2 1 flavours of stout smeared staggered fermions, with quark massegsat ph
ical values [6]. We used a lattice of fixed temporal extendpr- 4 at 3 = 3.75, corresponding
to lattice spacinga = 0.125 fm and physical temperatuie= 394 MeV~ 2.6T.. For different
choices of spatial sizk = 24,28,32,36,40,44,48,56 in lattice units, we collected large statistics
for eigenvalues and eigenvectors of the staggered Dirac operatorrigléliant spectral range - see
Ref. [7] for more details. Here and in the following the eigenvalu@se expressed in lattice units.
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Figure 2. Integrated ULSD (left) and second moment of the ULSD (righfmputed locally along the
spectrum, for several lattice sizes. Héve = 3-10 3.

Unfolding was done by ordering all the eigenvalues obtained on all thiggcwations (for a given
volume) according to their magnitude, and replacing them by their rank didded by the total
number of configurations. We then computed locally the integrated ULSD argkttond moment
of the ULSD, by dividing the spectrum in small bins of six&, computing the observables in each
bin, and assigning the resulting value to the average valdeimkach bin. We used several values
for AA, ranging from 110 23to 6- 103,

In Fig. 2 we show the integrated ULSI) and the second moment of the ULSF),, for
several values of the spatial volume. A transition from Poisson to RMT islglessible, and
moreover it gets sharper and sharper as the volume of the lattice is intréldsie suggests that
the transition becomes a true phase transition in the thermodynamic limit.

3. Finitesize scaling

To check if the Poisson/RMT transition in the spectral statistics (i.e., the localitdgioca-
lisation transition) is a genuine, Anderson-type phase transition, we laf@med a finite size
scaling analysis, along the lines of Refs. [11, 12, 13]. The Andersmsition is a second-order
phase transition, with the characteristic length of the sysigrdiverging at the critical poinA.
like £w(A) ~ |A — Ac|7Y. To determine the critical exponentand the critical poinf\¢, one picks
a dimensionless quantit9(A,L), measuring some local statistical properties of the spectrum, and
having different thermodynamic limits on the two sides of the transition (andipypss the critical
point), i.e.,

Qpoisson A < Ac (localised)
Lll_rp)0 Q(A,L) =< Qc A =Ac (critical), (3.1)
Qrmt A >Ac (delocalised)

As the notation suggesi®(A, L) is computed on a lattice of linear sikeFor large enough volume,
and close to the critical point, finite size scaling suggests that the dependEQon L is of the
form Q(A,L) = f(L/&x(A)). AsQ(A,L) is analytic inA for any finiteL, we must have

QA,L) =F(LY(A-Ac)), (3.2)

with F analytic. Here we have assumed that corrections to one-parameter sealibg neglected.
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Figure 3: Dependence of the fitted value wfand corresponding relative error as a function of the number
of termsnmay in the case of min = 36, AA - 10° = 1.5 andw- 10? = 2.8 (left). Dependence of the fitted
value ofv on the bin sizeAA for the smallest fitting range (center) and on the widtbf the fitting range

for the smallest bin size (right). Hetg,, = 36.

If one determines\; andv correctly, the numerical data f@(A,L) obtained for different
lattice sizes should collapse on a single curve, when plotted against thegseaiiableL 'V (A —
Ac). We then proceeded as follows: expanding the scaling fun€timnpowers ofA — A, one gets

QA,L) = iFnL”/"()\ — )™ (3.3)

By truncating the series to sonmg,ax and performing a fit to the numerical data, using several
volumes at a time, one can then determirg@ndA., together with the first few coefficienk,. For

our purposes, the best quantity turned out to be the integrated W,.SOur fitter was based on
the MINUIT library [9]. Statistical errors were determined by means of BKaife analysis. To
check for finite size effects, we repeated the fit using only data from lattiteizeL > L, for
increasing_min.

Systematic effects due to the truncation of the series for the scaling funEtipr{3.3), are
controlled by including more and more terms in the series, and checking hawshks change.

In order to circumvent the numerical instability of polynomial fits of large orde resorted to
the technique of constrained fits [10]. The basic idea of constrained fitsuse the available
information to constrain the values of the fitting parameters. In our caseatkayeeded only to
avoid that the polynomial coefficients of higher order take unphysidakga One then checks the
convergence of the resulting parameters and of the correspondorg as the number of terms
is increased. After convergence, the resulting errors include bothtistisffects and systematic
effects due to truncation [10].

To set the constraints, we shift and resdalas follows,F (x) = (F (x) — Frw)/(Froisson—
FruT), SO thatF interpolates between 1 (localised/Poisson region) and 0 (delocalised/&)hy.
The data indicate th&t changes rapidly, monotonically and almost linearly between 1 and 0 over a
rangedx. Any reasonable definition @fx has then to satisfy % F15x ~ 0. Moreoverdx provides
a reasonable estimate of the radius of converggnoéthe series. Furthermore, it is known that
(Fay1/Fa)p — 1 asn — , and so we expedi,p" ~ 1 (at least for larg@). One then finds that
Fn/(—F1)" is expected to be of order 1. This constraint was imposed rather loogebsking
Fn/(—F1)" to be distributed according to a Gaussian of zero mean and wigthi0 forn > 4. We
did not impose any constraint on the coefficiRtwith n < 4, as well as o andA.. The results
of the constrained fits converge rather rapidlynasx is increased, see Fig. 3. We went as far as
Nmax = 9, and we used the corresponding results for the following analyses.
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Figure 4: Dependence of the fitted value of averaged over.8 < w-10? < 3.0 and 10 < AA - 10° < 3.0,
on Lmin. The values olv obtained in the three symmetry classes of the 3D Andersoreh{sgmplectic,
vs = 1.375(16) [16], unitaryvy = 1.43(4) [14] and orthogonalo = 1.57(2) [15]) are shown for comparison
together with their errors (left). Plot ¢f against(s?), for several lattice sizes (right).

The effects of the choice of bin size and fitting range were checked tyyngathe bin size
AA and the widthw of the fitting range, which was centered approximately at the critical point.
The results show a slight tendencywto decrease a&A is decreased, but it is rather stable for
AA -10° < 3. There is also a slight tendency wfto increase aw is decreased, becoming rather
stable forw- 107 < 3. See Fig. 3. To quote a single value fgrwe averaged the central values
obtained for 1< AX - 10° < 3 and 26 < w- 10? < 3. As the error is also rather stable within these
ranges, we quote its average as the final errov éor each choice ok ,i,. We have checked that
other prescriptions (e.g., extrapolating to vanishingnd/orAA, or changing — within reasonable
bounds — the ranges efandAA over which the final average is performed) give consistent results
within the errors.

Concerning finite size effects, the fitted valuewincreases with_pin, stabilising around
Lmin = 36, see Fig. 4. This signals that our smallest volumes are still too small fepanaeneter
scaling to work, and that finite size corrections are still important there. ©ottier hand, as the
difference between the values obtained with, = 36 andLmin, = 40 is much smaller than the
statistical error, one-parameter scaling works fine for our largesimesu

The value for the critical poim. ~ 0.336 was obtained through the same procedure described
above. As a function df iy, the fitted value ofA; shows no systematic dependence, and different
choices ol»in give consistent values within the errors.

Our result for the critical exponemt= 1.43(6) is compatible with the result obtained for the
three-dimensional unitary Anderson moagl= 1.43(4) [14]. This strongly suggests that the tran-
sition found in the spectrum of the Dirac operator ab@yvis a true Anderson-type phase transition,
belonging to the same universality class of the three-dimensional unitarréo model.

4. Shape analysis

From the point of view of random matrix models, Fig. 2 shows that the loaaitsql statis-
tics along the spectrum are described by one-parameter families of modblspectral statistics
interpolating between Poisson and Wigner-Dyson along some path in the gpambability dis-
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tributions. To check if the appropriate one-parameter family depends osizbeof the lattice,
one can simply plot a couple of parameters of the ULSD against each ¢tiiergrojecting the
path onto a two-dimensional plane in the space of probability distributionspintgare seen to
collapse on a single curve, irrespectivelyLothen the intermediate ULSDs lie on a universal path
in the space of probability distributions [17].

In Fig. 4 we showl, and(s?), plotted against each other for several volumes, and we see
that they indeed lie on a single curve. Ads increased, points corresponding to a given value
of A flow towards the Poisson or RMT “fixed points”, while flowing away fromuarstable fixed
point corresponding tac, where a different universality class for the spectral statistics is éxgec
Similar plots made by changingy and/ora are compatible with a similar universality of the path,
but statistical errors are still too large to reach a definitive conclusion.

The transition from Poisson to Wigner-Dyson behaviour in finite volume igtber expected
to be described by a universal one-parameter family of random matrix mddglsComparing
with analogous results for the Anderson model, it turns out that the spstettigtics at the critical
point in the two models are compatible [18].
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