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The analytic continuation to an imaginary velocity of the canonical partition function of a thermal
system expressed in a moving frame has a natural implementation in the Euclidean path-integral
formulation in terms of shifted boundary conditions. The Poincaré invariance underlying a rel-
ativistic theory implies a dependence of the free-energy on the compact length L0 and the shift
ξξξ only through the combination β = L0(1 + ξξξ

2)1/2. This in turn implies that the energy and the
momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward
identities among the correlators of the energy-momentum tensor. The latter have interesting ap-
plications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and
a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare
parameters the shifted boundary conditions also provide a simple method to vary the temperature
in much smaller steps than with the standard procedure.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:Leonardo.Giusti@mib.infn.it
mailto:meyerh@kph.uni-mainz.de


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
1
4

. . . shifted boundary conditions Leonardo Giusti

1. Introduction

A relativistic thermal field theory can be formulated in the Euclidean path integral formalism
by imposing on the fields periodic boundary conditions1 in the compact direction up to a shift ξξξ in
the spatial directions [1, 2, 3]

φ(L0,xxx) = φ(0,xxx−L0 ξξξ ) . (1.1)

The free-energy density can be defined as usual

f (L0,ξξξ ) =− 1
L0V

lnZ(L0,ξξξ ) , (1.2)

where Z(L0,ξξξ ) is the partition function, and V is the spatial volume. In the thermodynamic limit
the invariance of the dynamics under the SO(4) group implies

f (L0,ξξξ ) = f (L0

√
1+ξξξ

2
,000) , (1.3)

i.e. the free energy is independent on the angles between the time and the space directions, while it

depends on the length of the compact direction β = L0

√
1+ξξξ

2 which fixes the inverse temperature
of the system. This redundancy implies that the total energy and momentum distributions of the
thermal theory are related, and interesting Ward identities (WIs) follow. As a result thermodynamic
potentials, which are usually extracted from the free energy itself and from the energy distribution
of the theory, can be extracted from the momentum distribution as well.

These ideas find interesting applications when a theory is discretized on the lattice, where
the momentum distribution is easier to access in presence of a non-zero shift in the boundary
conditions [1]. In this talk we review the derivation of Eq. (1.3), of the WIs that it implies, and
we show some potentially interesting applications on the lattice. A full-fledged discussion on this
topic as well as the unexplained notation can be found in the original references [1, 2, 3].

2. Euclidean theory with shifted boundary conditions

Consider a quantum field theory defined on R4, an orthonormal basis, and 4 linearly indepen-
dent primitive vectors v(µ) (µ = 0,1, . . . ,3). The latter can be represented by a primitive matrix
V ∈ GL(4,R) whose columns are the components of v(µ) in the orthonormal basis. For a given
point labeled with the coordinates xµ , the field is identified at all points with coordinates

xµ +Vµνmν , mν ∈ Z , (2.1)

i.e. we impose generalized periodic boundary conditions (GPBCs). The shifted boundary condi-
tions which implement the partition function in Eq. (1.2) are a special case of GPBCs. By defining
the primitive cell as usual

Ω =
{

x ∈ R4 | xµ = Vµνtν , 0≤ tµ < 1
}

, (2.2)

1To avoid unessential technical complications we restrict ourselves to bosonic theories in this presentation.
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6 parameters specify the orientation of the cell while 10 fix its geometry. For a Lorentz-invariant
theory in a finite volume, the most general relation between two primitive matrices V and W cor-
responding to a theory with two different sets of GPBCs and equal partition functions, is given
by

W = ΛV M, Λ ∈ SO(4), M ∈ SL(4,Z) . (2.3)

The matrix M modifies the geometry of the primitive cell, while Λ modifies its orientation. The
freedom to choose the former is a property of periodic boundary conditions, the freedom to choose
the latter is a property of the SO(4) invariance of the theory which in turn allows one to derive
Eq. (1.3) and the corresponding WIs. The partition function

Z(Vsbc) = Tr{e−L0(Ĥ−iξξξ ·P̂PP)} , Vsbc =


L0 0 0 0

L0ξ1 L1 0 0
L0ξ2 0 L2 0
L0ξ3 0 0 L3

 , (2.4)

can be expressed as a Euclidean path integral with the fields satisfying standard periodic boundary
conditions in the spatial directions, and the shifted boundary conditions in Eq. (1.1). By defining

V1 = M−1RVsbcM =


L1γ1 0 0 0
−L1γ1ξ1 L0/γ1 0 0

0 L0ξ2 L2 0
0 L0ξ3 0 L3

 (2.5)

with

R =


γ1 γ1ξ1 0 0
−γ1ξ1 γ1 0 0

0 0 1 0
0 0 0 1

 , M =


0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 , (2.6)

and γk =
(
1 +ξ 2

k

)−1/2, we conclude that Z(Vsbc) = Z(V1). We first focus on the case ξ2 = ξ3 = 0,
and later use the SO(3) rotation symmetry to generalize the result to a generic shift vector. The
partition function can be interpreted in terms of the states that propagate in the direction given by
the first column of V1. In the thermal field theory language, the latter are the eigenstates of the
‘screening’ Hamiltonian H̃, which acts on states living on a slice of dimensions (L0/γ1)×L2×L3

with ordinary periodic boundary conditions. Their spectrum yields the spatial correlation lengths
of the thermal system at inverse temperature (L0/γ1). The partition function can thus be written as

Z(V1) = Tr
{

exp−L1γ1(H̃ + iξ1ω̃)
}

, (2.7)

where ω̃ is the momentum operator along the primitive vector of length (L0/γ1). Its eigenvalues
are the Matsubara frequencies ωn = γ1

2πn
L0

, n ∈ Z. Assuming that the Hamiltonian H̃ has a transla-
tionally invariant vacuum and a mass gap, the right-hand side of Eq. (2.7) becomes insensitive to
the phase in the limit L1→ ∞ at fixed ξ1 (with exponentially small corrections, see Ref. [3]). This
in turn implies that the free energy densities associated with Vsbc and diag(L1γ1,L0/γ1,L2,L3) are
equal. Thanks to the invariance of the infinite-volume theory under three-dimensional rotations,
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this result extends to a generic imaginary velocity ξξξ . In the thermodynamic limit the net effect

of the generic shift ξξξ is thus to lower the temperature from 1/L0 to 1/β = 1/(L0

√
1+ξξξ

2), i.e.
we have proved Eq. (1.3). The latter is consistent with modern thermodynamic arguments on the
Lorentz transformation of the temperature and the free energy [4, 5] (the issue has been debated
for a long time, see Ref. [6] for a recent discussion), see Ref. [3] for more details.

3. Ward identities for the total energy and momentum
The relation (1.3) is the source of certain WIs for the energy-momentum tensor which can be

generated in a quasi-automated fashion by deriving the free-energy density with respect to L0 and
ξk. By remembering that the cumulants of the total momentum distribution can be written as

k{2n1,2n2,2n3}≡
1
V
〈P̂2n1

1 P̂2n2
2 P̂2n3

3 〉c =
(−1)n1+n2+n3+1

L2n1+2n2+2n3−1
0

∂ 2n1

∂ξ
2n1
1

∂ 2n2

∂ξ
2n2
2

∂ 2n3

∂ξ
2n3
3

f (L0,ξξξ )
∣∣∣
ξξξ=0

, (3.1)

in the thermodynamic limit a plethora of Ward identities among on-shell correlators of the total
momentum and/or energy are derived by inserting Eq. (1.3) in (3.1). By choosing ξξξ = {ξ1,0,0}, it
is straightforward to derive the master equation

k{2n,0,0}

L0
= (−1)n+1 (2n−1)!!

{ 1
L0

∂

∂L0

}n
f (L0,ξξξ )

∣∣∣
ξξξ=0

n = 1,2, . . . . (3.2)

If we define c1 ≡ e− f and recall that the higher cumulants of the total energy distribution are given
by

cn ≡
1
V
〈 Ĥn 〉c = (−1)n+1

[
n

∂ n−1

∂Ln−1
0

+L0
∂ n

∂Ln
0

]
f (L0,ξξξ )

∣∣∣
ξξξ=0

n = 2,3 . . . , (3.3)

it is clear that there is a linear relation among c1, . . . ,cn and the n first derivatives of the free-energy
density. Since Eq. (3.2) gives the k{2n,0,0} as linear combinations of the very same derivatives, the
relation reads

k{2n,0,0} =
(2n−1)!!

(2L2
0)n

n

∑
`=1

(2n− `)!
`!(n− `)!

(2L0)` c` , (3.4)

Up to n = 4 we obtain

L0 k{2,0,0} = c1 ,

L3
0 k{4,0,0} = 9c1 +3L0 c2 , (3.5)

L5
0 k{6,0,0} = 225c1 +90L0 c2 +15L2

0 c3 ,

L7
0 k{8,0,0} = 11025c1 +4725L0 c2 +1050L2

0 c3 +105L3
0 c4 .

If we remember that in the Euclidean 〈T00〉 = −e, 〈Tkk〉 = p, and P̂k →−iT 0k, where T µν(x0) =∫
d3xTµν(x) with Tµν being the energy-momentum field of the theory, Eqs. (3.5) can also be written

as

L0 〈T 01 T01〉c = 〈T00〉−〈T11〉 ,

L3
0 〈T 01 T 01 T 01 T01〉c = 9〈T11〉−9〈T00〉+3L0 〈T 00T00〉c , (3.6)

. . .
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where in each correlator the energy-momentum fields are inserted at different times. These rela-
tions show that in a relativistic thermal theory the total energy and momentum distributions are
related. The thermodynamics can thus be studied either from the energy or from the momentum
distribution.

3.1 Ward identities in presence of a non-zero shift
If now the system is boosted by choosing ξξξ 6= 0, standard parity is softly broken by the bound-

ary conditions in the compact direction, odd derivatives in the ξk do not vanish anymore, and new
interesting WIs hold. By deriving once with respect to L0 and ξk, it is easy to obtain the first
non-trivial relation

〈T0k〉ξξξ =
ξk

1−ξ 2
k

{
〈T00〉ξξξ −〈Tkk〉ξξξ

}
. (3.7)

An interesting consequence of this equation is that the entropy density s of the system at the inverse

temperature β = L0

√
1+ξξξ

2 is given by

s =− L0

γ3ξk
〈T0k〉ξξξ , (3.8)

where γ = 1/

√
1+ξξξ

2. Remarkably the entropy density can be obtained directly from the vac-
uum expectation value of the off-diagonal component T0k of the energy-momentum tensor. Ward
identities among correlators with more fields can easily be obtained by considering higher order
derivatives in L0 and ξk. For instance by deriving two times with respect to the shift components
we obtain

〈T0k〉ξξξ =
L0ξk

2 ∑
i j

〈
T 0i T0 j

〉
ξξξ ,c

[
δi j−

ξi ξ j

ξξξ
2

]
. (3.9)

By combining Eqs. (3.8) and (3.9), the entropy density can also be computed as

s−1 =−γ3

2 ∑
i j

〈
T 0i T0 j

〉
ξξξ ,c

〈T0i〉ξξξ 〈T0 j〉ξξξ
ξiξ j

[
δi j−

ξiξ j

ξξξ
2

]
, (3.10)

and the analogous expression for the specific heat reads

cv

s2 =−γ3

2 ∑
i j

〈
T 0i T0 j

〉
ξξξ ,c

〈T0i〉ξξξ 〈T0 j〉ξξξ
ξiξ j

ξξξ
2

[
(1−2ξξξ

2)δi j−3
ξiξ j

ξξξ
2

]
. (3.11)

4. Applications on the lattice
The shifted boundary conditions discussed so far provide an interesting formulation to study

thermal field theories on the lattice. There are many applications that can potentially benefit from
them. In this section we sketch a few examples with the computation of thermodynamic potentials
in mind.

4.1 Temperature scan at fixed lattice spacing

The possibility of varying the temperature by changing either L0/a or ξξξ allows for a fine
scan of the temperature axis at fixed lattice spacing. This is illustrated in Fig. 1, where it is also
compared with the standard procedure of varying L0/a only. This fact may turn out to be useful
in all those cases where the temperature needs to be changed in small steps, e.g. study of phase
transitions etc.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
1
4

. . . shifted boundary conditions Leonardo Giusti

 8

 9

 10

 11

 12

 13

 0  5  10  15  20  25  30

β
 /
 a

(L0/a)
2
 ξ

2

Figure 1: Inverse temperature values that become accessible with the use of shifted boundary conditions at
a fixed lattice spacing a and for different values of L0/a. The inverse temperatures accessible with a shift in
a single direction, ξξξ = (ξ1,0,0), are marked by a double circle.

4.2 Renormalization of the energy-momentum tensor
In the continuum, the charges associated with translational symmetries, i.e. the total energy

and momentum fields, do not need any ultraviolet renormalization thanks to the Ward identities
that they satisfy, for a recent discussion see Ref. [2] and references therein. On the lattice, however,
translational invariance is broken down to a discrete group and the standard charge discretizations
acquire finite ultraviolet renormalizations. The energy-momentum field Tµν is a symmetric rank-
two tensor. Its traceless part is an irreducible representation of the SO(4) group. On the lattice,
however, the diagonal and off-diagonal components of this multiplet belong to different irreducible
representations of the hypercubic lattice symmetry group and therefore renormalize in a different
way. In SU(N) Yang–Mills theory, they both renormalize multiplicatively. The WIs can be enforced
on the lattice to compute the overall renormalization constant ZT of the multiplet, and the relative
normalization zT between the off-diagonal and the diagonal components [7],

T R
01 = ZT T01, T R

00−T R
11 = ZT zT (T00−T11), etc. (4.1)

where the fields with a superscript ‘R’ are the renormalized ones. There are many ways to imple-
ment this strategy in practice. A possible choice is to require a primitive matrix

VT =


L0 0 0 0
L0
2

5
2 L0 0 0

0 0 L 0
0 0 0 L

 (4.2)

and compute zT and ZT as (see also Ref. [8])

zT =
3
2

〈T01〉VT

〈T00〉VT −〈T11〉VT

, ZT =
1

L0〈T0k〉VT

∂

∂ξk
lnZ(VT ) . (4.3)

6
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Alternatively ZT can be determined from (x0 6= y0, x2 6= y2)

ZT

zT

=
〈T00〉VT −〈T22〉VT

L0 〈T 02(x0)T02(y)〉VT ,c−L〈T̃02(x2)T02(y)〉VT ,c
. (4.4)

Being fixed by WIs, the finite renormalization constants ZT and zT depend on the bare coupling
constant only. Up to discretization effects, they are independent of the kinematics used to impose
them, e.g. the volume, the temperature, the shift parameter, x0 etc. Ultimately which WIs and/or
kinematics yield the most accurate results must be investigated numerically.

4.3 Calculation of the entropy and specific heat
Once the relevant renormalization constants are determined, the entropy density can be com-

puted from the expectation value of T0k on a lattice with shifted boundary conditions,

s =−ZT L0(1+ξξξ
2)3/2

ξk
〈T0k〉ξξξ , ξk 6= 0 , (4.5)

by performing simulations at a single inverse temperature value β = L0

√
1+ξξξ

2, and at a volume
large enough for finite-size effects to be negligible. The latter are exponentially small in (ML),
where M is the lightest screening mass of the theory [3]. For the theory discretized with the Wilson
action and for the ‘clover’ form of the lattice field strength tensor, discretization effects turn out to
be remarkably small [3, 9]. Once the entropy has been computed at various values of β , the pressure
can be computed by integrating s in the temperature. The ambiguity left due to the integration
constant is consistent with the fact that p is defined up to an arbitrary additive renormalization
constant.

The entropy density could also be computed directly from Eq. (3.10) without the need for
fixing the multiplicative renormalization constant. This would require, however, the computation
of the two-point correlation functions in a large volume. The latter can also be used to access the
specific heat of the system by using Eq (3.11).
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ported by the Center for Computational Sciences in Mainz, by the DFG grant ME 3622/2-1 Static
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