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We propose a new approach to search for the QCD phase transition in the density-temperature
plane, in terms of the canonical partition function, Zns, by combining experimental and lattice
numerical studies. We extract the Zns from the lattice QCD simulations and the RHIC (Relativistic
Heavy Ion Collider) data, and construct the moments as a function of µ/T , where µ and T stand
for chemical potential and temperature, respectively.
We calculate also the Lee-Yang zeros of Z(ξ ) obtained from the Zns of the lattice QCD and the
RHIC data, where Z and ξ ≡ exp(µ/T ) are the grand partition function and complex fugacity.
We show how to calculate the Lee-Yang zeros with high precision.
As a byproduct, we found clear signals of the Roberge–Weiss transition in the Lee-Yang zero dia-
gram, which occur not only at the pure imaginary chemical potential, but spread into the complex
regions with Im(µ) = k× 2π
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1. Introduction

A dream of researchers in QCD is to find the QCD phase transition and clarify the nature
of quark and gluon world. Indeed many interesting phases have been predicted which motivate
theoretical and experimental researches[1]. Lattice QCD numerical works are expected to give
reliable information as a first principle approach.

So far, however, there have been no conclusive theoretical predictions, nor experimental ev-
idence of the QCD phase transition, once we depart into non-zero baryon density regions. Phe-
nomenological models include ambiguous parameters or applicable limit, and the lattice simulation
suffer from the so-called ‘sign’ problem.

High energy heavy-ion collisions are experiments to explore the QCD phases in (µ,T ) plane,
where µ is the baryon chemical potential, and T is the temperature. The Beam Energy Scan (BES)
at RHIC especially targets the QCD phase diagram study[2]. The present work may help to extract
information on the QCD phase diagram from the BES.

2. Constructing Zn

The grand partition function Z and the canonical partition function Zn are related as

Z(ξ ,T ) = Tre−(H−µN̂)/T =
+Nmax

∑
n=−Nmax

〈n|e−H/T |n〉eµn/T =
+Nmax

∑
n=−Nmax

Zn(T )ξ n, (2.1)

where ξ = exp(µ/T ) and
Zn = 〈n|e−H/T |n〉. (2.2)

Here, we assume that the number operator N̂ commutes with H, that is, N̂ is a conserved quantity.

2.1 Lattice

Lattice numerical simulations evaluate the grand partition function,

Z(µ,T ) =
∫

DU (det∆(µ))Nf exp(−SG). (2.3)

where N f is the number of flavor, and in the following we consider N f = 2 case. The grand partition
function, Z, can be expanded as a polynomial in terms of the fugacity, ξ , with coefficients, Zn. Once
we realize this relation, we are led to several ways to get Zn from Z.

One is to insert the delta function

δ (n− N̂) =
1

2π

∫
dθeiθ(n−N̂) (2.4)

into Z(T ), where θ = µI/T . Since for the pure imaginary chemical potential, µI , the fermion
determinant is real, and no sign problem appears, we can therefore integrate Z(µI) over µI/T .

This method is numerically unstable for large n as shown in Ref.[4]. Another method was
proposed in Ref.[3], and further investigated in Ref.[5]. The fermion matrix, ∆, is expressed by the
reduction formula developed in Ref.[6] as,

det∆(µ) = C0ξ−Nred/2
Nred

∏
n=1

(λn +ξ ) = C0

Nred

∑
n=0

cnξ n−Nred/2 = C0

Nred/2

∑
n=−Nred/2

cnξ n, (2.5)
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√
s (GeV) ξ obtained here ξ obtained from a freeze-out analysis (Ref.[7])

11.5 7.48331(1) 8.040
19.6 3.209(15) 3.623
27 2.4342(51) 2.615
39 1.883(12) 1.981
62.4 1.5338(3) 1.551
200 1.17497(9) 1.152

where λ ’s are eigen values of the reduced matrix. where Nred = 4NcNxNyNz, Nc is the number of
colors, and Nx,Ny and Nz denote the lattice spatial size. A lattice size is 83 ×4 and 103 ×4, and we
consider a heavy quark case, mπ/mρ = 0.8.

In Eq.(2.3), we set
det∆(µ) → (det∆(µ)/det∆(0))det∆(0), (2.6)

and use det∆(0) as the integration measure. Inserting Eqs.(2.6) with (2.5) into Eq.(2.3), the canon-
ical partition function, Zn is obtained as a coefficient of ξ n.

Since the Monte Carlo update is performed with det∆(0), no sign problem due to the complex
fermion determinant exists in this method, but there is an overlap problem especially at low tem-
perature; when averaging cn over generated configurations, its sign fluctuates. i.e., the generated
configurations are poor ones from the importance sampling viewpoint.

2.2 RHIC experiment
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Figure 1: The canonicalcal par-
tition functions, Zn, calculated by
Lattice QCD.

Recent net proton multiplicity measurements have been
attracting increasing attention [8, 9], because they enable the
exploration of the QCD phase diagram [10, 11] by varying
the colliding energy and observing the evolution trajectory
(T,µB) that passes near the critical region in the QCD phase
diagram. The net proton multiplicity distributions Pn ob-
served in experiments are related to Zn as

Pn(ξ ) = Zn ξ n. (2.7)

Because of the charge conjugation and parity symmetries, Zn

satisfies
Zn = Z−n. (2.8)

Using Eqs. (2.7) and (2.8), we can determine ξ and Zn from the experimental data. Table 2.2
shows the obtained ξ together with that obtained by freeze-out analysis in Ref.[7]. The errors are
estimated from the deviations of Eq. (2.8). Note that the freeze-out temperature and the chemical
potential in Ref.[7] were obtained from secondary particle distributions and their yields, and no
multiplicity is used.
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3. Moments as a function of µ/T

Once we get Zn, we can construct the grand partition function for arbitrary value of ξ ,

Z(ξ ,T ) =
+Nmax

∑
n=−Nmax

Zn(T )ξ n, (3.1)

Then, at any value of ξ , the moments can be calculated as,

λk(ξ ) = (T
∂

∂ µ
)k logZ = (ξ

∂
∂ξ

)k logZ(ξ ). (3.2)
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Figure 2: λ4/λ2 as a function of µ/T . (Lattice)
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Figure 3: Schematical diagram of the QCD phase in
µ/T −T plane.

In Refs.[12, 13, 14], it is argued that the negative value of λ4/λ2 is a signal of reaching the
phase transition. Although the lattice QCD results above µ/T > 1 should not be considered too
seriously, the behavior of λ4/λ2 in Fig.2 qualitatively matches this picture: Below Tc, we encounter
the phase transition as µ/T increases (See Fig.3), and λ4/λ2 becomes negative, while above Tc we
do not see any indication of the phase transition even when we increase µ/T . More realistic lattice
simulations with the physical quark masses and large volume will provide a quantitative behaviors.

After such numerical works, it is instructive to see experimental data. We construct Zn from
net-proton multiplicity at RHIC[2]. We show λ4/λ2 as a function of µ/T at

√
s=200 and 19.6 GeV,

in Figs.3 and 3, respectively.
√

s = 200 GeV data corresponds to high temperature and low density,
while

√
s = 19.6 GeV is lower temperature and higher density. Therefore the freeze-out points of√

s = 200 and 19.6 locate around A and B in Fig.3.

4. Lee–Yang zeros

Using the equation,

Z(ξ ,T ) =
+Nmax

∑
n=−Nmax

Zn(T )ξ n, (4.1)

we can extend ξ from real values to complex values.
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Figure 4: λ4/λ2 as a function of µ/T con-
structed from RHIC data (Star) at

√
s=200

GeV. Upper and lower curves stand for esti-
mated errors coming from the ambiguity of
Zn of n ∼ Nmax.
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Figure 5: λ4/λ2 as a function of µ/T con-
structed from RHIC data (Star) at

√
s = 19.6

GeV. Upper and lower curves stand for the
same meaning as the previous figure.

Figure 6: Schematic diagram of
CBK contours in the divide-and-
conquer search for residues.

We propose a method by which Lee–Yang zeros of the
QCD system at finite temperature and density can be deter-
mined without ambiguity. The Lee-Yang zeros are the zeros
of the grand partition function Z(ξ ) which characterize the
statistical nature of a system[17] in the complex plane of fu-
gacity,

f (ξ ) ≡Cξ NmaxZ(ξ ) = ∏(ξ −αl). (4.2)

f (ξ ) = 0 and Z(ξ ) = 0 are equivalent except at the origin,
ξ = 0, where no zeroes exist.

We first map the problem into the calculation of the residue of f ′/ f :

f ′/ f = (log f )′ = ∑1/(ξ −αl). (4.3)

For this equation, the left-hand side is integrated along a contour, and the residues inside the contour
are summed according to Cauchy theorem.

All calculations were performed using the multiple-precision package, FMlib[15], and the
number of significant digits was 50 - 100.

Figs. 7 and 8 show the Lee–Yang zero diagram constructed from RHIC experimental data at√
s = 200 and 19.6 GeV. The LYZ at

√
s = 19.6 GeV distribute much smaller region around the

origin than those at
√

s = 200 GeV. It means that the baryon density of the system at
√

s = 19.6
GeV is larger. From the analysis in Sec.3, these data correspond to the location A and B in the
phase diagram 3.

Although Nmax is not sufficiently large in the current experiments, we can see a circle-like
structure of the zeros. If this circle crosses the real positive axis as Nmax →∞, it is a phase transition
point. If the system has a crossover transition. the zeros do not cross the axis

As shown in Fig. 6, starting from 0 ≤ θ < 2π and 0 ≤ r ≤ 1 in polar coordinates, the region is
divided into four pieces:
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Figure 7: Lee-Yang zero (LYZ) diagram constructed
from RHIC data at

√
s = 200 GeV.
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Figure 8: LYZ diagram at
√

s = 19.6 GeV.
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Figure 9: Lee-Yang zero distribution of lattice QCD sim-
ulation. β = 1.95(T/Tc = 1.2)[18].

(
rA ≤ r ≤ rB

θA ≤ θ ≤ θB

)
→

rA ≤ r ≤ rAB rA ≤ r ≤ rAB

θA ≤ θ ≤ θAB θAB ≤ θ ≤ θA

rAB ≤ r ≤ rB rAB ≤ r ≤ rB

θA ≤ θ ≤ θAB θAB ≤ θ ≤ θA

 ,

where rAB = (rA + rB)/2,θAB = (θA +
θB)/2. The Cauchy integral is evaluated
on each section, which has the shape of a
cut Baum-Kuchen (cBK). This divide-and-conquer process is iterated. When no residue is found
inside a contour, no further divisions are applied to that region.

Fig.9 shows the Lee-Yang zero structure for a lattice simulation at T/T c ∼ 1.2. It is marvelous
that there are clear indication of the Roberge-Weiss phase transition that there are clear indication
of the Roberge-Weiss phase transition, at arg(µ/T ) = 2π(k + 1)/3, with integer k. This strongly
suggests that the Roberge-Weiss transition occurs not only at pure imaginary chemical potential
region (on the unit circle in the fugacity plane), but also at µ/T = θR + 2πi(k + 1)/3. The region
of θR is finite, but we do not know what controls the length of the region.

5. Concluding remarks

In this report, we propose an approach to explore the QCD phase diagram using numerical and
experimental analyses. A key issue is Zn, the canonical partition functions, which can be obtained
from high energy nuclear collision data and from lattice QCD calculations.

Once we have Zn, we can reconstruct the grand partition functions, Z(µ/T,T ), at any values
of µ/T , although we must consider effects of Nmax. Current maximum values of |n| are restricted
because of the experimental statistics and the lattice overlap problem, because Zn dump rapidly as
|n| increases.
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In the process to obtain Zn described in Sec.2, N̂ should be commutable with the Hamilto-
nian. Net-baryon and net-charge distribution are satisfied with this condition, but the net-proton
distribution is not. We expect that from the net-proton multiplicity the net-baryon distribution is
reconstructed either by an event simulation or the method in Ref.[19, 20]. The analysis of the net-
charge distribution using our method will also bring rich information on the QCD phase diagram.

We developed also a numerical method to calculate the Lee-Yang zeros. This is very stable,
and makes zero determination a well-posed problem: factorization algorithm of polynomial zero
search is an ill-problem, because small errors at an early stage lead to large errors in the solution.
We can even obtain zeros in a specified complex fugacity region. Using the method, we can obtain
the Lee-Yang zeros both for experimental and lattice data. Especially we found that the Roberge-
Weiss transition above Tc [21] occurs not only at pure imaginary chemical potential (on the unit
circle in the complex fugacity plane), but also they spread with finite real chemical imaginary
potential components. See Fig.9.
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