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We describe a weak coupling realization of the deconfinementtransition in gauge theory com-

pactified onR3×S
1. We consider Yang-Mills theory with a single Weyl fermion ofmassm in the

adjoint representation of the gauge group. The fermion is subject to periodic boundary conditions,

λ (0) = λ (L), whereL is the size of the circleS1. This theory reduces to thermal Yang-Mills the-

ory in the limitm→ ∞. In the limitm→ 0 the deconfinement transition can be studied using weak

coupling methods. The analysis is based on semi-classical objects characterized by topological

and magnetic charges. At leading order the relevant configurations are monopole-instantons and

monopole-anti-monopole pairs (“bions”). We argue that in the m− L plane the weak coupling

transition is continuously connected to the deconfinement transition in pure gauge theory.
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1. Introduction

Finding controlled approximations to study the deconfinement transition in QCD, or in gauge
theories related to QCD, is desirable for many reasons. Recently there hasbeen some progress in
this direction by investigating novel compactifications [1, 2]. In this contribution we summarize
recent work on gauge theory onR3 × S

1 [3, 4] . We will argue that we can construct a theory
that is continuously connected (as a function of a mass parameter) to pure gauge theory at finite
temperature, and that this theory posses a deconfinement transition that can be studied in weak
coupling.

We consider gauge theory with a single Weyl fermion in the adjoint representation of the gauge
group. The gauge group can be any semi-simple compact Lie group. The lagrangian is

L =− 1
4g2Fa

µνFaµν +
i

g2 λ aσ ·Dabλ b+
m
g2 λ aλ a . (1.1)

Both fermions and bosons satisfy periodic boundary conditions on the circle, λ (0) = λ (L) and
Aµ(0) = Aµ(L). A proposed phase diagram for this theory as a function of the compactification
scaleL and the massm is shown in Fig. 1. Atm= 0 the theory reduces toN = 1 SUSY Yang-Mills
theory. The twisted partition function is equal to the Witten index, and there is nodeconfinement
transition as a function ofL. We will show below that for smallmthere is a deconfinement transition
at smallL. In SU(N) gauge theories this transition is characterized by the breaking ofZN symmetry.
As m→∞ the theory reduces to thermal pure gauge theory which is known to have a deconfinement
phase transition atL = βc = 1/Tc. This transition is second order forSU(2) gauge theory, and first
order forSU(N ≥ 3) or other higher rank gauge groups. Fig. 1 shows the minimal phase diagram
consistent with these facts. It is possible that there are additional transitionsat intermediatem that
are not associated with a change of symmetry. It is also possible that the slope of the transition line
is not positive everywhere. This would not invalidate the picture presented here, but it would make
extrapolation from smallm to largemmore difficult. Both of these possibilities can be investigated
using lattice simulations.

2. Weak coupling calculation

2.1 Effective theory for small S1

In this section we will focus onSU(2) gauge theory. Classical vacua of the theory are labeled
by the Polyakov line

Ω = exp

(

i
∫

A4dx4

)

. (2.1)

The Polyakov line can be diagonalized,Ω = diag(ei∆θ/2,e−i∆θ/2). At a generic point on the moduli
space∆θ 6= 0 and the Polyakov line acts as a Higgs field that breaks the gauge symmetry to its
abelian subgroup,SU(2) → U(1). We can construct an effective theory that describes the light
fields in the limit that the sizeL of circleS1 is small.

In this limit we can focus on the lowest Kaluza-Klein modes, and the effectivelagrangian
involves three dimensional fields. There are two light bosonic fields. One isthe massless pho-
ton associated with the unbrokenU(1) symmetry. We describe this field using the dual photon
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Figure 1: Schematic phase diagram ofSU(2) gauge theory with one adjoint Weyl fermion of massm
compactified onR3×S

1. The length of the circle is denoted byL. As m→ ∞ the theory has a deconfining
phase transition atL = βc, whereβc = 1/Tc is the inverse critical temperature of the pure gauge theory.

εi jk∂kσ = Fi j . We will see that nearm= 0 the potential for∆θ is almost flat and the second light
field is associated with fluctuations of the holonomy. We defineb = 4π∆θ/g2. Finally, there is
one light fermionic fieldλ α which is associated with the abelian subgroup. Form= 0, these three
fields can be written in terms of a chiral superfieldB= b+ iσ +

√
2θ αλα . The effective lagrangian

for the bosonic fields is

L =
g2

32π2L

[

(∂ib)
2+(∂iσ)2]+V(σ ,b) , (2.2)

where we have determined the kinetic terms at leading order in perturbation theory.

2.2 Perturbative effects

The scalar potentialV(σ ,b) has an expansion of the form

V = ∑
n

gnVn
0 +∑

n
gne

− c0
g2 Vn

1 +∑
n

gne
− 2c0

g2 Vn
2 + . . . , (2.3)

whereVn
0 is related to perturbative effects andVn

k is determined by semi-classical configuration
with actionS= kc0/g2. At one-loop order the perturbative part of the potential was computed by
Gross, Pisarski and Yaffe [5]. InN = 1 SUSY YM theory the potential vanishes because bosonic
and fermionic contributions cancel. If the mass of the fermion is not zero thenthe cancellation is
not exact. We find

V =− m2

2π2L2

∞

∑
n=1

1
n2 |trΩn|2 =−m2

L2 B2

(

∆θ
2π

)

, (2.4)

whereB2 is the second Bernoulli polynomial. There is no potential for the dual photon. The
potential for the holonomy has a minimum at∆θ = 0,2π, which corresponds to theZ2 broken
phase. The center symmetric point∆θ = π is a local maximum of the potential.
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Figure 2: Topological objects inSU(2) gauge theory onR3×S
1. The objects are labeled by(QM,Qtop)

for the center-symmetric holonomy. Lines denoted fermionic zero modes, and the arrows point fromλλ to
λ̄ λ̄ vertices.

2.3 Non-perturbative effects: SUSY Yang-Mills theory

For m= 0 the potential for∆θ vanishes to all orders in perturbation theory. This implies that
exponentially small corrections that arise from topological objects are important even at small cou-
pling. Semiclassical objects onR3×S

1 can be classified by the asymptotic value of the holonomy
Ω and by their topological and magnetic charges [5]

(QM,Qtop) =

(

1
4π

∫

S2

B·dΣ,
1

32π2

∫

R3×S1
Fa

µν F̃µν a
)

. (2.5)

Periodic instantons (calorons) are topological objects withQtop = k (k ∈ Z) and magnetic charge
zero. Monopole-instantons, also known as dyons, are magnetically charged objects with fractional
topological charge. Monopole-instantons come in two types, which we will refer to as BPS and KK
monopole-instantons [6, 7]. Instantons can be viewed as bound states ofBPS and KK monopoles.
In particular, the magnetic charges of the two types of monopoles are opposite, and their topological
charges add to an integer, see Fig. 2.

The coupling of the elementary BPS and KK monopoles to the low energy fields isgiven by

M1 = e−b+iσ λλ , M2 = ηe+b−iσ λλ , (2.6)

M 1 = e−b−iσ λ̄ λ̄ , M 2 = ηe+b+iσ λ̄ λ̄ , (2.7)

whereη = exp(−2S0)with S0= 4π2/g2 and we have suppressed overall numerical factors. Monopole-
instantons carry fermionic zero modes and do not contribute to the bosonic potential. In the SUSY
Yang-Mills case fermion zero modes are lifted by the integral over Grasssmann parameters, and
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monopole-instantons give a non-zero superpotential. We find [8]

W =
M3

PVL
g2

(

e−B+e−2S0eB) , (2.8)

whereMPV is a Pauli-Villars mass parameter. This is the Affleck-Dine-Seiberg superpotential,
which was originally determined by different methods [9]. The scalar potential is

V(b,σ)∼
∣

∣

∣

∣

∂W

∂B

∣

∣

∣

∣

2

∼ M6
PVL3e−2S0

g6

[

cosh

(

8π
g2 (∆θ −π)

)

−cos(2σ)

]

. (2.9)

We observe that the potential has a minimum at the center-symmetric point∆θ = π, and that there
is a mass gap for the dual photon. This means that form= 0 the theory is in the confined phase for
all L.

2.4 Non-perturbative effects: Non-zero mass case

In this section we show how to rederive this result without using supersymmetry, and then ex-
tend the calculation tom 6= 0. The relationV ∼ |∂W /∂B|2 implies that the monopole contribution
to the superpotential corresponds to a monopole-anti-monopole contributionto the scalar poten-
tial. In particular, the potential for the dual photons is generated by magnetic“bions” [M1M 2]

and [M2M 1], and the potential for the holonomy is generated by neutral “bions”[M1M 1] and
[M2M 2] [10].

Calculating the contribution of neutral bions is subtle because the topologicalcharge is zero
and there is no barrier between the semi-classical contribution and the perturbative vacuum. The
amplitude is of the form

A[M1M 1]
∼ e−2b

∫

d3r e−S12(r), S12(r) =−2
4πL
g2r

+4log(r) (2.10)

whered3r is the integral over the monopole separation. The first term inS12 is the scalar attraction
between the monopoles, and the second term is due to approximate fermion zero modes. The
integral overr diverges at smallr. In [3] we show how to compute the amplitude by analytic
continuation ing2 [3]. This method was introduced by Bogomolny and Zinn-Justin (BZJ) in the
context of instanton-anti-instanton calculations in quantum mechanics. We show that the total
contribution from neutral bions is given by

V(b,σ)∼ M6
PVL3e−2S0

g6 cosh

(

8π
g2 (∆θ −π)

)

, (2.11)

in agreement with the calculation based on the superpotential.
Once we know how to compute the potential without supersymmetry it is straightforward to

extent the result tom 6= 0. There are three contributions: 1) The perturbative potential given in
equ. (2.4), 2) the potential from neutral and charged bions, 3) a contribution from monopoles in
which the fermion zero mode is lifted by the mass term. We find [3]

Ṽ = cosh2b′−cos2σ +
m̃

2L̃2
cosσ

(

coshb′− b′ sinhb′

3logL̃−1

)

− 1

1728log3 L̃−1

(

m̃

L̃2

)2

(b′)2 , (2.12)
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Figure 3: Contour plots of the effective potential for the holonomy inSU(3) (left panel) andG2 gauge
theory (right panel). The potentials are shown at the critical lengthLc corresponding to the first order
deconfinement transition. The holonomy is written asΩ = exp(i~H · (~b0+~b)) and plotted as a function of
b1,2. See [4] for the definition of the Cartan vector~H and the center symmetric holonomy~b0.

where we have introduced dimensionless variablesb′ = b− 4π2/g2, L̃ = ΛL, andm̃= m/Λ. Λ
is the scale parameter, andṼ is a dimensionless potential, see equ. (2.35) in [3]. The competition
between the center stabilizing bions and the center de-stabilizing monopoles and perturbative terms
leads to a phase transition atLc = Λ−1(m̃/8)1/2, consistent with the phase diagram shown in Fig. 1.

3. Extension to other gauge groups and outlook

In [4] we show how to extend this analysis to higher rank gauge groups. We consider both
gauge groups with and without a non-trivial center. If the case of gauge groups with a trivial center,
like G2, the deconfinement transition is not associated with a change of symmetry. For a general
gauge group of rankr there arer-1 fundamental BPS and one fundamental KK monopole-instanton
[8]. The monopole and bion induced potentials can be expressed in terms ofthe roots of the Lie
algebra.

The phase diagram for higher rank gauge groups has the same structure as theSU(2) phase
diagram shown in Fig. 1, except that the phase transition is first order. In Fig. 3 we show contour
plots of the potential for the holonomy at the deconfinement transition in the case of SU(3) and
G2 gauge theory. Both transitions are clearly first order, but in the case ofG2 the holonomy is
non-vanishing in both phases. There are a variety of issues that can bestudied:

• The largeNc limit is smooth provided the mass of the lightest higgsed gluon,mw ∼ 2π/(NcL),
is kept fixed asNc → ∞. The effective potential has multiple branches labeled byk =

0, . . . ,Nc−1, in agreement with Witten’s arguments [11, 12].

• We can compute the shift inLc due to a non-zero theta term. We observe that the critical
Tc ∼ L−1

c is reduced [13], in agreement with lattice calculations reported in [14].
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• We have studied the distribution of the eigenvalues of the Polyakov line in the confined and
deconfined phases. We observe the expected eigenvalue repulsion in the confined phase, and
clustering in the deconfined phase. In the case ofG2 we observe that the Polyakov line jumps
from a slightly negative value belowTc to a positive value aboveTc. This behavior was also
seen in lattice calculations [15].

Recent work has also begun to address the role of fermions in the fundamental representation.
For large quark masses one finds the expected effects due to explicit breaking of the center sym-
metry [16]. For small quark masses the theory flows to strong coupling, anda dual description is
required.
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