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We describe a weak coupling realization of the deconfinertransition in gauge theory com-
pactified onR® x S*. We consider Yang-Mills theory with a single Weyl fermionrossmin the
adjoint representation of the gauge group. The fermionbgestito periodic boundary conditions,
A(0) = A(L), whereL is the size of the circl&;. This theory reduces to thermal Yang-Mills the-
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coupling methods. The analysis is based on semi-clasdipatts characterized by topological
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transition is continuously connected to the deconfinenransttion in pure gauge theory.
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1. Introduction

Finding controlled approximations to study the deconfinement transition in QOB gauge
theories related to QCD, is desirable for many reasons. Recently thebed@asome progress in
this direction by investigating novel compactifications [1, 2]. In this contrilbuti@ summarize
recent work on gauge theory @ x St [3, 4] . We will argue that we can construct a theory
that is continuously connected (as a function of a mass parameter) toguge theory at finite
temperature, and that this theory posses a deconfinement transitionrha¢ studied in weak
coupling.

We consider gauge theory with a single Weyl fermion in the adjoint repratsem of the gauge
group. The gauge group can be any semi-simple compact Lie group. Jraadgan is

2= LraFamwy Lyag piypy Myapa (1.1)
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Both fermions and bosons satisfy periodic boundary conditions on thie,cir@0) = A (L) and
Au(0) = A, (L). A proposed phase diagram for this theory as a function of the compatitific
scalel. and the masshis shown in Fig. 1. Am= 0 the theory reduces t¢” = 1 SUSY Yang-Mills
theory. The twisted partition function is equal to the Witten index, and there deoonfinement
transition as a function df. We will show below that for smaththere is a deconfinement transition
atsmallL. In SU(N) gauge theories this transition is characterized by the breakifig ®fmmetry.
As m— oo the theory reduces to thermal pure gauge theory which is known to hammafthement
phase transition dt = 3. = 1/T.. This transition is second order f8tJ(2) gauge theory, and first
order forSU(N > 3) or other higher rank gauge groups. Fig. 1 shows the minimal phase wlagra
consistent with these facts. It is possible that there are additional transtiortsrmediaten that
are not associated with a change of symmetry. It is also possible that tleeo§lhie transition line
is not positive everywhere. This would not invalidate the picture preddvdee, but it would make
extrapolation from smalhto largem more difficult. Both of these possibilities can be investigated
using lattice simulations.

2. Weak coupling calculation

2.1 Effectivetheory for small St

In this section we will focus 08U(2) gauge theory. Classical vacua of the theory are labeled
by the Polyakov line

Q :exp(i /A4dx4> . (2.1)

The Polyakov line can be diagonaliz&dl= diag(€29/2, e-126/2), At a generic point on the moduli
spaceAd # 0 and the Polyakov line acts as a Higgs field that breaks the gauge symmetry to its
abelian subgroupSU(2) — U(1). We can construct an effective theory that describes the light
fields in the limit that the size of circle St is small.

In this limit we can focus on the lowest Kaluza-Klein modes, and the effetdiyeangian
involves three dimensional fields. There are two light bosonic fields. Otfeeisnassless pho-
ton associated with the unbrokéh(1) symmetry. We describe this field using the dual photon
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Figure 1: Schematic phase diagram 88J(2) gauge theory with one adjoint Weyl fermion of mass
compactified orR3 x S. The length of the circle is denoted hy As m — « the theory has a deconfining
phase transition dt = 3, wheref. = 1/T; is the inverse critical temperature of the pure gauge theory

&ijkoko = Fj. We will see that neam = 0 the potential fonA@ is almost flat and the second light
field is associated with fluctuations of the holonomy. We defire 41A0/g?. Finally, there is
one light fermionic fieldA @ which is associated with the abelian subgroup. iRet 0, these three
fields can be written in terms of a chiral superfiBle: b+io ++/289A,. The effective lagrangian
for the bosonic fields is

2
= ﬁ [(3b)2+ (4.0)2] +V(0,b), 2.2)

where we have determined the kinetic terms at leading order in perturbatiny.the

2.2 Perturbative effects

The scalar potentidlf (o, b) has an expansion of the form
V= Zg”Vc?Jr Zg”eﬁg%vanr Zg”eﬁzg%ovszr... (2.3)
n n n

where\j' is related to perturbative effects alfl is determined by semi-classical configuration
with actionS= kcy/g?. At one-loop order the perturbative part of the potential was computed b
Gross, Pisarski and Yaffe [5]. bl#” = 1 SUSY YM theory the potential vanishes because bosonic
and fermionic contributions cancel. If the mass of the fermion is not zerottieecancellation is

not exact. We find
m =1 mé A6
Ve Y S rQ"P= B, =— 2.4
oere 2 T = 2<2n>’ 24)

whereB; is the second Bernoulli polynomial. There is no potential for the dual phofdre
potential for the holonomy has a minimum &@ = 0,27, which corresponds to th& broken
phase. The center symmetric palkl = rTis a local maximum of the potential.
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Figure 2: Topological objects irBU(2) gauge theory o3 x S'. The objects are labeled B0, Qtop)
for the center-symmetric holonomy. Lines denoted fernuaeiro modes, and the arrows point fram to
AA vertices.

2.3 Non-perturbative effects. SUSY Yang-Millstheory

For m = 0 the potential foA@ vanishes to all orders in perturbation theory. This implies that
exponentially small corrections that arise from topological objects are bauaven at small cou-
pling. Semiclassical objects @&? x S can be classified by the asymptotic value of the holonomy
Q and by their topological and magnetic charges [5]

_ 1 1 a ruva
(QM;Q{OD) — <4T[A B‘dz’@/RaxglFqu . (25)

Periodic instantons (calorons) are topological objects Withy = k (k € Z) and magnetic charge
zero. Monopole-instantons, also known as dyons, are magneticallyethabjects with fractional
topological charge. Monopole-instantons come in two types, which we viglt te as BPS and KK
monopole-instantons [6, 7]. Instantons can be viewed as bound st&&Saind KK monopoles.
In particular, the magnetic charges of the two types of monopoles areitg@wsl their topological
charges add to an integer, see Fig. 2.

The coupling of the elementary BPS and KK monopoles to the low energy figiigeis by

My =€ PN, o =nePTNA, (2.6)
My =ePNN, L, =nePHIAN, (2.7)

wheren = exp(—2S) with § = 4712 /g2 and we have suppressed overall numerical factors. Monopole-
instantons carry fermionic zero modes and do not contribute to the bosaeiatial. In the SUSY
Yang-Mills case fermion zero modes are lifted by the integral over Grasssparameters, and

SN
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monopole-instantons give a non-zero superpotential. We find [8]

Mgv'— -B | ~—2%.B
W:?(e +e2eR) (2.8)
whereMpy is a Pauli-Villars mass parameter. This is the Affleck-Dine-Seiberg sufesribal,

which was originally determined by different methods [9]. The scalar pialds

o
0B

2 M L3S

V(b,0) ~ ‘ e [COSh<Z;T(A9 — n)) - cos(Zo)] . (2.9)

We observe that the potential has a minimum at the center-symmetricgbiatrr, and that there
is a mass gap for the dual photon. This means thanferO the theory is in the confined phase for
all L.

2.4 Non-perturbative effects: Non-zero mass case

In this section we show how to rederive this result without using supersyityyraad then ex-
tend the calculation tm# 0. The relatiorV ~ |d% /dB|? implies that the monopole contribution
to the superpotential corresponds to a monopole-anti-monopole contribattbe scalar poten-
tial. In particular, the potential for the dual photons is generated by madiéias” [.#1.4 5]
and [.#>.# ], and the potential for the holonomy is generated by neutral “bigng}.#,] and
[ o.M 5] [10].

Calculating the contribution of neutral bions is subtle because the topolatiaede is zero
and there is no barrier between the semi-classical contribution and thebagitte vacuum. The
amplitude is of the form

4mL
Ay ~ @2 [ re S0, Splr) = 275+ dogln) (210)

whered?r is the integral over the monopole separation. The first terBi4iis the scalar attraction
between the monopoles, and the second term is due to approximate fernroomades. The
integral overr diverges at smalt. In [3] we show how to compute the amplitude by analytic
continuation ing? [3]. This method was introduced by Bogomolny and Zinn-Justin (BZJ) in the
context of instanton-anti-instanton calculations in quantum mechanics. e tslat the total
contribution from neutral bions is given by
6 | 3p—2

V(b,0) ~ WCOSh(?(AG - n)> , (2.11)
in agreement with the calculation based on the superpotential.

Once we know how to compute the potential without supersymmetry it is straiglatfd to
extent the result ton # 0. There are three contributions: 1) The perturbative potential given in
equ. (2.4), 2) the potential from neutral and charged bions, 3) aibotitm from monopoles in
which the fermion zero mode is lifted by the mass term. We find [3]

- M b’ sinhb/ 1 M\ 2
V =coshd —cosd + —— coso | coshb’ — - - - ~ | (0)2. (2.12
o ( 3IogL1> 1728|06L1<L2> (b)%, (2.12)
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Figure 3: Contour plots of the effective potential for the holonomySu(3) (left panel) andG, gauge
theory (right panel). The potentials are shown at the @litiengthL. corresponding to the first order
deconfinement transition. The holonomy is writtenas- exp(iH - (b + b)) and plotted as a function of
b1 . See [4] for the definition of the Cartan vectérand the center symmetric holonory.

where we have introduced dimensionless variables b — 4n2/gz, L=AL, andm = m/A. A

is the scale parameter, aXids a dimensionless potential, see equ. (2.35) in [3]. The competition
between the center stabilizing bions and the center de-stabilizing monopdlpsraurbative terms
leads to a phase transitionlat= A~1(fi/8)1/2, consistent with the phase diagram shown in Fig. 1.

3. Extension to other gauge groups and outlook

In [4] we show how to extend this analysis to higher rank gauge grougscafisider both
gauge groups with and without a non-trivial center. If the case of@gugups with a trivial center,
like Gy, the deconfinement transition is not associated with a change of symmetrg. gemeral
gauge group of rankthere are-1 fundamental BPS and one fundamental KK monopole-instanton
[8]. The monopole and bion induced potentials can be expressed in teitms ifots of the Lie
algebra.

The phase diagram for higher rank gauge groups has the same grastieSU(2) phase
diagram shown in Fig. 1, except that the phase transition is first ondétigl 3 we show contour
plots of the potential for the holonomy at the deconfinement transition in treafe®U(3) and
G2 gauge theory. Both transitions are clearly first order, but in the cas® t¢tie holonomy is
non-vanishing in both phases. There are a variety of issues that cindied:

e The largeN. limitis smooth provided the mass of the lightest higgsed glogy- 277/ (NcL),
is kept fixed asN; — «. The effective potential has multiple branches labelecky
0,...,N: —1, in agreement with Witten’s arguments [11, 12].

e We can compute the shift ib, due to a non-zero theta term. We observe that the critical
Te ~ Lo tis reduced [13], in agreement with lattice calculations reported in [14].
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e We have studied the distribution of the eigenvalues of the Polyakov line in tifened and
deconfined phases. We observe the expected eigenvalue repulsiercantimed phase, and
clustering in the deconfined phase. In the cagg,oive observe that the Polyakov line jumps
from a slightly negative value beloi to a positive value abov&. This behavior was also
seen in lattice calculations [15].

Recent work has also begun to address the role of fermions in the funtimepresentation.
For large quark masses one finds the expected effects due to expladitraref the center sym-
metry [16]. For small quark masses the theory flows to strong couplinga @l description is

required.
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