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We compare two approaches used for computing scattering phase shifts and other low-energy
observables in lattice QCD: the finite size method invented by Lüscher as well as the recently
introduced HAL QCD method which is based on the extraction of multi body potentials from
Nambu-Bethe-Salpeter wave functions. We perform quenched QCD simulations featuring lattices
with spatial extents of 1.8fm to 5.5fm, a lattice spacing of 0.115fm and a pion mass of 940MeV.
We compute phase shifts and scattering length of ππ scattering in the I=2 channel for either
method and compare the results.
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1. Introduction

Recent developments in lattice QCD, algorithmic techniques and computer technology allow
us to perform ab-initio calculations of multi-hadron scattering observables. This helps us getting
deeper insights and a better understanding of the nuclear force.
The most common approach to these kind of problems is the finite volume method invented by
Lüscher [1, 2]. It is based on the idea that information on scattering phase shifts of two-particles
can be extracted by computing energy differences between the interacting and the non-interacting
system contained in a box. Recently, HAL QCD proposed another method which employs the
Nambu-Bethe-Salpeter wave function in order to extract interaction kernels (potentials) in a lattice
simulation [3, 4]. From these kernels, low-energy observables such as scattering phase shifts and
lengths can be obtained by solving the corresponding Schrödinger equation.
In this paper, we compare these two approaches by applying them to the I=2 two-pion scattering
problem, which can be evaluated very precisely in present day lattice calculations. In principle,
both methods should give the same results but are affected by different systematic uncertainties
which we carefully address in this paper.

2. Potential method

As an input for both methods, we need to compute the single-pion as well as the double pion
correlation functions defined by Cπ(t, t0)≡∑x

〈
π+(t,x)Jπ−(t0)

〉
/V and Cππ(t, t0,r)≡∑x

〈
π+(t,x+

r)π+(t,x)Jπ−(t0)Jπ−(t0)
〉
/V . Here, V is the spatial volume of the lattice and Jπ− a pseudo-scalar

interpolating operator. In this paper, we employ plain wall sources1. In order to suppress poten-
tial statistical and systematic effects, we consider the ratio R(t, t0,r)≡Cππ(t, t0,r)/C2

π(t, t0). Note
that the summed ratio R(t, t0)≡∑r R(t, t0,r) drops off exponentially fast with the energy difference
∆E = 2

√
k2 +m2

π − 2mπ for |t− t0|→∞. Therefore, one can compute the asymptotic momentum
k2 from the effective mass plateau of R(t, t0) and the pion mass mπ . In a second step, the obtained
k2 is plugged into the energy-eigenvalue equation of two particles in a box which is then solved for
the scattering phase shift δ (k). This is Lüscher’s famous finite volume approach and all relevant
information can be found in [1].
The HAL QCD potential method instead makes use of the spatial information contained in R(t, t0,r):
one can show [6] that R(t, t0,r) obeys the time-dependent Schrödinger-like equation(

− ∂

∂ t
+

1
4mπ

∂ 2

∂ t2 +
∇2

r
mπ

)
R(t, t0,r) =

∫
d3r′U(r,r′)R(t, t0,r′), (2.1)

where U is a non-local kernel function. We expand it in terms of derivatives, where we only keep
the (ultra-local) LO term VC(r). Substituting this expansion into (2.1) and solving for VC(r) yields

VC(r) =
1

mπ

∇2
rR(t, t0,r)
R(t, t0,r)

−
∂

∂ t R(t, t0,r)
R(t, t0,r)

+
1

4mπ

∂ 2

∂ t2 R(t, t0,r)
R(t, t0,r)

. (2.2)

Expression (2.2) allows us to compute VC(r) on the lattice. Subsequently, we insert this potential
into the Schrödinger equation (

k2 +∇
2
r
)

ψk(r) = mπ VC(r)ψk(r) (2.3)
1A study which also includes Gaussian sources can be found in [5]
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which can then be solved for arbitrary k2 in the continuum and infinite volume limit.2 For that
purpose, the potential is interpolated using a barycentric rational interpolation and set to zero for
r>rmax, where rmax is the largest observed distance. 3 By matching the resulting wave function ψk

for large |r| to the asymptotic form predicted by scattering theory

ψk(r)
r→∞−→ eiδ (k)(cosδ (k) j0(kr)− sinδ (k)n0(kr)

)
, (2.4)

we are able to extract the scattering phase shift δ≡δ (k).
Once the scattering phase shifts δ for different asymptotic momenta k are extracted, we can fit the
data to the effective range expansion

k cotδ (k)
mπ

=
1

mπaI=2
ππ

+
1
2

mπre

(
k2

m2
π

)
+P(mπre)

3
(

k2

m2
π

)2

+O

((
k2

m2
π

)3
)

(2.5)

in order to obtain the scattering length aI=2
ππ .

3. Setup and error treatment

We generate approximately 400 statistically independent quenched configurations using the
Wilson plaquette action at β=5.8726, corresponding to a∼0.115fm. We use volumes with spatial
extents of Ls/a=16,24,32 and 48 with a fixed temporal extent of Lt/a=128. In the valence sector,
we use 2 HEX smeared, tree-level clover improved Wilson quarks [7 – 10], which exhibit small
cutoff effects on spectral quantities [11, 9]. The pion mass was tuned to mπ∼940MeV and we use
Dirichlet boundary conditions in temporal direction. A more detailed study involving smaller pion
masses and anti-periodic boundary conditions can be found in [5]. In order to improve statistics,
we use four sources per config with a relative shift of 32 time-slices.
The statistical error is computed by repeating the analysis on 2000 bootstrap samples. We estimate
the systematic uncertainty with the histogram method [8 – 10, 12 – 14]. The following possible
sources of systematic uncertainty were considered:

• Contributions from excited states: we vary the lower bound of the fitting range for extracting
mπ (potential and Lüscher’s method), ∆E (Lüscher’s method) and VC(r) (potential method).
We consistently used the time intervals R1=[15,48], R2=[24,48], R3=[33,48].

• Violation of rotational invariance: finite volume and discretization effects break rotational
invariance. Whereas this source of systematic uncertainty is hard to estimate in Lüscher’s
method, it can be well assessed in the potential method. This is done by extracting the
potential along three extreme lattice directions, i.e. on-axis, along a plane-diagonal and
along the cubic-diagonal.

• Asymptotic regime: in the potential method, the phase shift is extracted from the wave func-
tion in the asymptotic regime. In order to make sure that we reached that regime, we use
five disjoint regions in r from which we extract δ and propagate the differences among these
regions into the final systematic error.

2Note that the energy of the two-particle system has to be below the threshold of inelastic scattering.
3We also applied phenomenologically motivated fits which smoothly approach zero in the large distance limit but

found no significant difference in the final results from the interpolation approach.
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Figure 1: Constant fits to effective mass plateau of R(t, t0). Bands indicate the corresponding errors from
the fits. Note that the systematic uncertainty attributed to the choice of the fitting range (R1,R2,R3) is small
(Ls=3.7fm).

• Higher orders in effective range expansion: we fit δ (k) to the effective range expansion (2.5)
where we either include only terms up to NLO or up to NNLO.

This amounts to 3·3·5·2=90 analyses for the potential method and 3·2=6 different analyses for
Lüscher’s method. The results obtained from the different analyses are collected in a histogram. In
case of the scattering phase δ (k) we assign a weight of one to each analysis. In case of the scattering
length, the results were weighted with the quality-of-fit obtained from the fit to the effective range
expansion (we have checked that choosing a unit weight instead yields compatible results, i.e. the
central value changes by less than 0.1σ and the systematic error increases by less than 1%). In
all cases, the median of the resulting distribution yields our central value and the central 68% the
systematic error.

4. Results

aI=2
ππ [fm] value stat. sys. total exc. states rot.-inv. asympt. ERE

Potential -0.1568 0.0005 0.0063 0.0002 0.0062 0.0 0.0006
Lüscher -0.1615 0.0020 0.0020 + ? 0.0017 ? – 0.0008

Table 1: Results for scattering lengths aI=2
ππ obtained from either method at mπ∼940MeV, including a

full error budget. The breakups include the effect of excited states (column 5), the violation of rotational
invariance (column 6, not estimated for Lüscher’s method, see text), the asymptotic behavior of the wave-
function (column 7, applicable only for the potential method) and different orders in the effective range
expansion (column 8). Due to correlations, the errors do not sum up to 100% when added in square.

Figure 1 displays the effective mass plateau of R(t, t0) with different fits for all three ranges Ri.
It demonstrates that effects of excited states are small in the considered fit regions. The analogous
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Figure 2: Left: two-pion potential on different ranges Ri computed on the cubic diagonal (points). Right:
two-pion potential for R2 but evaluated on axis (green squares), along plane-diagonals (red circles) or cubic-
diagonal (purple diamonds). In both cases, the bands indicate the result for the interpolation (Ls=3.7fm).
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Figure 3: Scattering phase shifts obtained from the potential and Lüscher’s method. The red band is obtained
by the HAL QCD method using the potential obtained from Ls=3.7fm. The green band is obtained from
Ls=1.8fm, and almost overlaps with one from Ls=3.7fm. The point data are obtained by Lüscher’s method
with the center-of-mass frame on each volumes, except for the red point around Ecm ∼ 30MeV, which is
obtained on the Ls=3.7fm volume by applying Lüscher’s method to boosted system with center-of-mass
momentum Pcm=2π/Ls.
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plot for the potential method is shown in the left panel of Figure 2. It depicts the r dependence
of the potentials, extracted from the lattice cubic-diagonal and different time slices Ri. The good
agreement among the curves suggests that higher orders in the derivative expansion are small. This
is different for the effect of rotational invariance breaking, as can be seen from the right panel of
Figure 2. It displays the potentials obtained on the same temporal range R2 but from different lattice
directions. Here we observe deviation between the on-axis data and the other two. This uncertainty
induced by rotational invariance violation is the major contribution to the overall systematic error
of the potential method.
The fitted potential can be inserted into the Schrödinger equation (2.3) which can then be solved
for arbitrary k2 in order to obtain the two-pion wave functions ψk in infinite volume. From these
we compute the scattering phase shifts δ (k). The computed curve can be compared to the phase
shifts obtained from Lüscher’s method. This is done in Figure 3, where the bands correspond to
the results obtained from the potential method and the points correspond to those obtained from
Lüscher’s method. We observe that the results of both methods agree very well. In the potential
method, the red band corresponds to the results obtained from Ls=3.7fm. The same curve is drawn
for Ls=1.84fm in green and highly agrees with the results obtained at Ls=3.7fm, since only a tiny
fraction of it can be seen at the lower edge of the red band. Comparing the potential on different
volumes, we find that the finite volume artifact in the potential is negligible; all potentials agree
within errors. As a result, the phase shifts obtained from potentials computed on Ls=(1.8−5.5) fm
agree very well within errors. In Lüscher’s method, the phase shifts at different energies are mostly
obtained in the center-of-mass frame by changing the lattice spatial volume. We also study the
non-rest frame extension of Lüscher’s method for Ls=3.7fm, which corresponds to the data point
at ECM∼30MeV. The error bar is rather large since it is extracted in a boosted system with boost
momentum Pcm=(1,0,0).
Finally, we want to compare the scattering lengths aI=2

ππ obtained from either method. Since finite
volume effects are small in the potential method, we extract the scattering length from our refer-
ence lattice with Ls=3.7fm in that case. For Lüscher’s method we have to take into account all four
different volumes in order to perform the k→0 extrapolation. Table 1 displays the results of these
extrapolations along with an error budget. It exhibits that the dominant source of systematic un-
certainty is the violation of rotational invariance. This uncertainty is hard to estimate in Lüscher’s
approach since the spatial information on the two-particle correlation functions is lost: the system-
atic error for that method is thus underestimated. Furthermore, the contributions from excited states
is more relevant for this method than for the potential method. Therefore, the potential method is
well suited for analyzing multi-baryon systems in which the signal degrades exponentially fast with
time.

5. Summary

We have performed an I=2 ππ scattering study in quenched QCD with heavy pions of mπ ∼
940 MeV. In the determination of scattering phase shifts on the lattice, two different approaches
have been employed with a particular emphasis on the examination of systematic uncertainties in
each method: Lüscher’s finite volume approach and the HAL QCD potential method. The results
of the phase shift and the scattering length have been found to agree well between the two methods.
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We have observed that the largest systematic uncertainty in the potential method stems from the
violation of rotational invariance, while such a systematic uncertainty is difficult to estimate in
Lüscher’s method and thus has been neglected in this study. While Lüscher’s method is sensitive to
excited state contaminations, the time-dependent potential method can compensate a gross of these
effects. This is especially important when multi-baryon systems are considered. Furthermore, the
potential approach allows for extracting the scattering phase at arbitrary momenta, as long as the
energy of the system is below the inelastic threshold.
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