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1. Introduction

To study multi-baryon states in lattice QCD one needs to calculate correlation functions of the
form

=

i / N ! =
[CMNG o oY (R1, K2y KNy ) = <HBak(fk,r) B“ (0,0>>. (1.1)
k=1

=1

Here the B and B are interpolating fields with the quantum numbers of some baryons. These
operators are given by

Bo = €ape (T1) ap(91)p:a [(92)y6(T2) 15 (q3) 5. (1.2a)
B” =& (') (q,)P“[(q,) " (1) (g3)%], (1.2b)

in terms of the quark fields. Here and throughout in the paper Latin indices correspond to color
degrees of freedom (DoFs) while Greek indices correspond to the spin DoFs associated with the
quark operators. For notational convenience all upper indices correspond to quark operators at the
source while lower indices correspond to quark operators at the sink. The choice of I’y = 1 and
I'; = CYs yields the interpolating operators for the proton with (g1,42,93) = (u,u,d) and for the
neutron with (q1,492,93) = (d,u,d). This allows the study of atomic nuclei in Lattice QCD. In
principle the tools for such studies are at hand and several calculations in order to examine light
nuclei [1, 2, 3] and the nuclear force [4, 5, 6] have been performed recently.

If one attempts to evaluate the expression in equation (1.1) via the Wick theorem in a naive
way, one is faced with [[;ny! contractions. In this formula the product goes over all flavors of
quarks which appear in B and B and ny denotes the number of quarks of flavor f. In the case of
nuclei with atomic mass number A for each contraction there are 6444 combination of spinor- and
color-indices which must be evaluated. The evaluation of all these contributions in a naive way
becomes quickly unfeasible even for moderate system sizes.

For the related, but somewhat simpler case, where the system consists of a large number of
mesons, several efficient methods to calculate the correlation functions exist [7, 8]. The most
recent of these techniques allows for the study of systems containing up to 72 pions [8]. For
systems comprised of baryons there has also been substantial progress recently in reducing this
computational challenge. In [1] the number of contractions has been reduced significantly by
exploiting the permutation symmetry of the quark operators. A further improvement has been
achieved in [9], where the combined permutations of color and spin indices are used to create a
unified list of independent contractions. While this method reduces the amount of contractions
to be evaluated on each gauge configuration significantly, the creation of the list of independent
contractions remains difficult. This is due to the fact that the full set of possible contractions, which
scales factorially and exponentially in the number of quarks, has to be applied once to determine
the coefficients in the list. For small systems it is possible to carry out this calculation once, but it
becomes quickly impractical for larger systems. The method proposed in [10] besides being able
to consider multiple source locations, brings an improvement by generating the list of terms to be
contracted recursively. The determinant algorithm of [10] can further reduce the computational
cost in the case of certain large nuclei by transforming the factorially scaling task of calculating
Wick-contractions into the polynomially scaling task of calculating determinants.
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In this work a recursive algorithm for the evaluation of the above defined correlation functions
is discussed. This method, which is based on the unified contraction algorithm, was first introduced
and described in more detail in [11].

The organization of this paper is as follows: In section 2 the unified contraction algorithm is
described. After that in section 3 properties of antisymmetric tensors are discussed and a method for
the recursive constructions of these tensors is introduced. It is followed in section 4 by a description
of the recursive algorithm in the case of a single quark source. This algorithm is generalized in
section 5. The spectial case of atomic nuclei is discussed in section 6 and a comparison with other
methods is given. The paper is summarized in section 7.

2. The unified contraction algorithm

In this work the unified contraction algorithm, which was introduced in [9], is reviewed in
order to allow for a self contained presentation. Important ingredients for the unified contraction
algorithms are baryon blocks. These blocks are defined as

S (1, 8; 0, B, 7:,b,0) Zs ) (Bs @) a5 a5 ). 2D

Thus they represent the propagation of three quarks g1, ¢g2,g3 at the source to a baryon B at the
sink. Such blocks have been used successfully in other works [1, 2, 3, 4, 5, 6]. Because the blocks
already contain some permutations the usage of blocks alone may already reduce the number of
contractions to evaluate. Furthermore it is possible to construct baryon blocks with complicated
spatial structure to increase the overlap with the desired states or to project individual baryons to
specific momenta. A graphical representation of the blocks corresponding to protons and neutrons
can be found in figure 1.

It is convenient to introduce combined spinor-color indices & and to rewrite the baryon blocks
as

fq' 92,93 (t,8; 6 q1) 42 Zs <B§ X,1) q? " qg >@§(‘m>. 2.2)

The indices & are in the range from 1 to 4N, = 12.
In order to express the complete correlation function in terms of the baryon blocks objects G
can be defined, which contain the remaining Dirac- and color-structure at the source. These objects

GBay ) g@) g(@)) .= (rl)aﬁ(é(‘“))(FZ)B(é("z’)ﬁ(é(‘”))80(5(4”) c(&192))c(£1)) 2.3)

are also visualized in figure 1. By combining the objects G and the baryon blocks f an expression

[C(N)]ahaZw--,aN (t) _

61,02,...,0n -
Z ql 92:43 l‘ 81;51((11)752([12)56 ) fq1 42, qz(t Sy §3N s %1%2)17 3(1%3))
ocr
GP (ausEg0) 8 E ). G (aws 08 ) 8 ) 61 sen(o). 24

for the complete correlation function can be obtained. The set X containes all permutations, which
permute indices which correspond to identical quark flavors.
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Figure 1: A graphic representation of the baryon blocks f and the G-tensors used for the construction of
correlation functions of atomic nuclei. Filled dots correspond to open indices related to u-quarks and half-
filled dots correspond to open indices related to d-quarks. Solid lines correspond to connection by Dirac
indices and dashed lines indicate the color structure.

Notably the structure of equation (2.4) does not depend on the the gauge configuration. It is
possible to write down

L<N>(ala <oy O gl(q])v gz(qz)’ 53((13)7- B 3(1({/]22> 3(1%/2,)13 3*(]%3)) =
Y, 6" (sl £ate) Eofa)) - O™ (ool oy oty o) sen(0): - 25)
occ

which contains all G-tensors and all permutations and which is independent of the gauge config-
uration. Once the object L is created it is possible to evaluate the correlation function without the
need of any additional permutations via

[CONGrgg(6) = i (1,81: 6", &%) &) = 1, iy 1 E)

LM (0, o E,E) ) gl gl eln)y - (0.6)

It is important to note that in practice the object L is sparse and therefore only a comparatively
small number of terms contributes to the above expression.

3. Treating antisymmetric tensors in a recursive way

All independent components of a fully antisymmetric tensor X (&, &,,---, &) can be uniquely
described by tuples A(§) = (n(1),n(2),---,n(k)) where n(i) is the number of occurrences of the
value i amongst the indices &, &,,-- -, &;. Because of the antisymmetry only n(i) =0 and n(i) = 1
are allowed for non-zero components. By convention the component associated with the tuple A (&)
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should be the one where the values i, for which n(i) = 1, occur amongst the indices in ascending
order. All other components can be constructed by rearraging the order of the indices and taking
into account the sign of the permutation. For example, if X is a tensor with three antisymmetric
indices, each ranging from one to four, the tuple A{&} = (1,0,1,1) corresponds to the component
X(1,3,4).

If X is an antisymmetric tensor with k indices and Y is an antisymmetric tensor with / indices,
then their antisymmetric product Z = X oY is a tensor with k4 [/ antisymmetric indices. The
components of Z are defined as

(XoY)(z):=Z(z) = Y, X(0)Y(y)sgn(xly), 3.1)
z=x+y
where the tuples
z=A{&1,..., &1} (3.2)
x:A{éla"'aék} (33)
y=A{s1,-- -, Ckri} (34

identify the antisymmetric components and

sgn(xly) = [T (=1)" (3.5)

i>j

yj=1
is the sign of the permutation that is necessary to bring the indices of the tensors X and Y into
ascending order. If each tensor has r independent groups of antisymmetric indices then each such
group can be described by an individual tuple. In this case the antisymmetrized tensor is given by

(XoY)(z1,22,--,2r) = Z(21,22,---,2r)
- Z X(x17x27'-'7xr)Y(ylay27"'7yr)Sgn(x1‘y1)Sgn<x2b}2)"'Sgn('xr|yr>‘ (36)

21=X1+Y
2=X2+Y

Zr=Xr+Y, r

When a tensor X can be expressed as X (n) = 1Y, ®---®Y, then the antisymmetrized
form of this tensor can be obtained by X n) —y, 1eY,e---0Y, up to a normalization factor. It can be
efficient to construct X via a recursive relation of the form

x® = x*=1) gy . (3.7)

This is especially true if one is only interested in a subset of the independent components of X ().
In such a case even at the intermediate stages only the construction of a subset of all possible
independent components is required. An example of such a situation is depicted in figure 2. There
it can be seen, that if only a single component in the last stage of the recursion is of interest at the
intermediate stages only a fraction of the components need to be calculated. Therefore a drastic
reduction in the number of necessary operations can be achieved.
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Figure 2: The recursive construction of a tensor X®) with the method explained in the text. Each box
represents an independent component of the given tensor and the number inside each box represents the
tuple associated with this component. If only the black component of X ) is needed then at the intermediate
stages only the black components must be constructed and only the operations symbolized with black arrows
have to be performed.

4. Recursive construction of correlation functions using one quark source/sink

In equation (2.6) the correlation function was reformulated in terms of an object L. It is
antisymmetric under the excange of two indices which correspond to the same quark flavor or
baryon type. Because of the antisymmetry-structure this object can be written as

LABI{a} AP o}, .. AW{EY ADLEY AW{EY). 4.1)

Here AW corresponds to a tuple as defined in the previous section corresponding to all indices of
quark flavor or baryon type x and ignoring all other indices. Using this notation L can be calculated
via the recursion relation

LoD — [(0) o Gp (4.2)

n+l1

where Gp, ., has to be antisymmetrized in order to have the same structure as L.

n+1
To obtain the correlation function L must be contracted with the gauge configuration dependent
factors

F(N)(617"'6N;t;§1(q1)7§2(q2)7§3(q3)7"'7 3(1%1_)27 3([({/2_)17 ’751‘{]3))

— félll,ﬂlz-,% (%51;61((11)752(%)753(%)) 3 'fé]I:I,Q2,Q3 (f75N2§3(1({/1_)2, 3(;{/2217 3(1%3))' (4.3)

Because the contraction of an antisymmetric tensor with any other tensor is equal to the contraction
with the antisymmetrized version of this other tensor it is useful to define an antisymmetrized
version of F called F_ which has the form

FUAP{5),AB (8}, AC{ELAD(E}AD(E)). (44)
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This antisymmetrized tensor can be calculated using the recursion

pth) _ p) o cara2.03 4.5)

- - Byt

Once F () has been constructed the correlation function can be written as

CM(1;ABI(5},... AW {a},...)
1
=— Y F_(N)(A(Ba){g},...’A(“){é}"“).L(N)(A(Ba){a}"“’A(u){ng}"“) (4.6)
AD{E}
qe{ud,s}

with the normalization factor
2
JV:nqn!nqb!...(l’lga!an!...) , “4.7)

where ng, is the number of quarks of flavor g; and np, is the number of baryons of type B; in the sys-
tem. The sum goes over all possible values of the tuples A("){é }. Thus only tuples corresponding
to quark indices and not to baryon indices are summed.

5. Generalizations

The procedure described in the previous section can only be applied to simple systems con-
taining up to 12 quarks per flavor and might not be optimal if not all spin states are of interest. It
can be extended to deal with more general cases. These extensions are discussed shortly in this
section.

5.1 Several quark sources

To allow for N, quark sources the construction must be modified in a way that the contractions
between the object F_ and L allow for quark propagation form every baryon at the sink to every
quark source. This can be achieved by replacing f and G with the two objects

GB(X;é(lh)’ 6(‘12)’ 5(93)) — 8?(95),5(5((11))Ss(x),s(g(qz))6S(X)’S(§(q3>)
G (@) k(€. k(£), K(E),
f = = (q1) Elaa) glg3)
e (0,981, 8) @0)) = ¥ 5,4 (%) <Ba(w)(X,t) U > (5.1b)

(5.1a)

The £-indices are now combined color-spinor-source indices which now range from 1 to 12N
and y and y are combined baryon-type-source indices. s(&) is the source part of &, k(&) is the
spinor-color part and a(y) and a (&) are the spinor-parts of y and . The functions s;(X) allow for
different spatial structures of the baryons at the sink side. In this formulation it is assumed that at
the source side the quarks within each baryon originate from the same source. This condition can
be relaxed in a straight-forward way. The objects F_ and G can be constructed as before using the
recursion relations form equations (4.5) and (4.2) and the correlation function can be determined
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for mutually orthogonal sources via

(4B [y}, AW g},

= ¥ EY@A ), A0 ) LA ), A g, 5

A(zu){g;}
ic{a,b,c}

5.2 Projection to spin states

The correlation function itself can have a large number of spinor indices and hence can have
many components. Often not single components but projections of the form

Cor(t) =55 5 1OV 5 55 () 53)

are of interest. In this case it is possible to combine the tensors .# and L before the correlation
function is calculated using

(ns,!np, ... ) Ly (AP{8}, AP {8}, AL} AL} AV {E})
= )y LA o}, AP a},... AW(E}AD{E},AV(EY)

ABI Lo} ABD {a},...
M (AP {a} AB) (g}, ABILSY ABILSY ) (5.4)

where .#_ is the antiysmmetric part of .# . This modified list can be used to calculate the projected
correlation function

Cylt) = ;V;F(N)(A(Ba){S},...,A(”){é},...) Ly (ABI(SY,. AWLEY ). (5.5)

Now the sum goes over all tuples corresponding to either quarks or baryons.

6. Atomic nuclei

A special case of multi-baryon systems, which is of great interest, are atomic nuclei. For the
creation and annihilation of nucleons the interpolating operators

Po = €ape (T1) apttp:a [uyn (2)ysds:c], (6.1a)
No = €ape (T'1) apdp:a [ttys(T2) y5ds:c] (6.1b)
P* = gbe (1) )*Bhia [77b (1) 193], (6.1c)
N = gdbe (1)) 4B gP* [arb (1) 19 °) (6.1d)

are commonly used. If np and ny denote the number of protons and the number of neutrons in a
system the recursion relations for F_ and L can be brought to the form

[ (npHlny) _ f (np.y) e Gp, (6.2a)
[(npan+1) _ g (npany) o G, (6.2b)
ploptlon) _ p(npay) f;’”’d, (6.2¢)
plpn+l) _ plupny) f,fl,’"’d, (6.2d)
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Figure 3: A scematic representation of the objects F_ used in the recursion relations for atomic nuclei. Each
number corresponds to the upper bound of independent components of F_ for the indicated numbers (np,ny)
in the reltivistic case with one quark source. The red and green arrows indicate different paths which can be
used to construct the same tensor. The green path is more efficient than the red one.

with the starting conditions either

LOY = Gy and FOD ff\f’”’d (6.32)

or

L9 =Gy and FUO = pued (6.3b)

For the number of independent components at each stage of the recursion the upper bound

P(np,nN) = C(I’lp,D—np)C(l’lN,D—nN)
C(2np +ny,3D —2np — nN)C(l/lp +2ny,3D —np — 2nN), (6.4)

can be derived. Here D is the number of effective spinor components, which is 2 for the non-
relativistic case and 4 for the relativistic case and C(ny,na,--+) = (nj +n2+---)!/(n1!ny!---) are
multinomial coefficients. In an actual computation the number of required components might be
significantly smaller due to the sparse nature of L.

The objects F_(nP ) (and L("»")) can be arranged on a grid, as it is shown in figure 3. There
are several ways the relations (6.2a)-(6.2d) can be applied to arrive at the same tensor. These ways
however differ in their computational complexity. This is true not only when the upper bound is
considered but also when the actual number of required components are taken into account. Here
and in the following discussion only the computational effort for the construction of the objects

F"™) are considered which dominates the calculation. All other tasks such as e. g. the contraction

of F""™) wyith L") can be neglected.
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Figure 4: Three representative cases for the combined calculation of two atomic nuclei. The red and blue
dots represent the nuclei that are to be calculated and the arrows indicate the order in which protons and
neutrons are added. In the case (a) a speedup of about 10% can be reached. In case (b) more operations
are required than for the separate calculation of the indicated nuclei. In case (c) the blue nucleus can be
calculated without additional effort. Therefore in this case a speedup of about 47% can be observed.

An example for two different paths is shown in figure 3. In the case of the green path all
required neutrons are added first and the protons are added afterwards. In the case of the red
path additions of the two different types of nucleons are mixed. It was found that it is always
advantageous to add one species of nucleons first, so that the area where the number of independent
components can be large is avoided. This region is particularly expensive because the reduction of
the number of independent components due to the antisymmetry structure is least effective in this
region.

Given that the objects F,(n” ™) and L) are constructed recursively it is natural to ask,
whether it is advantageous to combine the calculation of several nuclei. The answer to this question
depends on what nuclei and which spin-states are of interest. In figure 4 three possible situations
are shown. It is assumed that all spin-states are of interest. In 4a and 4b two systems with different
numbers (np,ny) are to be calculated, namely (2,3) and (3,4). In the case shown in figure 4a the
first three stages are common for both nuclei. In this setting a speedup of 10% compared to the
separate calculation can be achieved. An alternative to this setting is shown in figure 4b. Here a
path on which both nuclei are located is used. It turns out that this path results in more operations
than the separate calculation of the two nuclei. In figure 4c the nuclei with (4,4) and (3,4) are to
be calcluated. In this case a speedup of 47% compared to the separate calculation can be observed.

The computational cost for the construction of the tensors F' (npnw)

for all nuclei accessible with
one quark source and relativistic operators is given in table 1. It can be seen, that the described
approach is much more efficient than the naive calculation for all nuclei. The gain increases with
growing system size. In table 2 the recursive method is compared to the unified contraction al-
gorithm as it is introduced in [9] for selected nuclei and spin-states. The recursive method is
advantageous for all but the smallest systems.

The method of [10] uses determinants for the calculation of the quark level permutations
in the correlation function for a fixed structure of color-spinor indices and spatial location of the

10
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Np Ny No. of op. Naive No. of op. 7

0 2 199584 15925248 79.8

0 3 5825088 8.3 x10'! 1.4 x 103
0 4 54768672 1.1 x 10V 1.9 x 10°
1 1 474048 11943936 25.2

1 2 19241280 5.5 x 10! 2.9 x10*
1 3 109789200 6.7 x 10'6 6.1 x 108
1 4 179769600 1.7 x 10% 9.2 x 101
2 2 531321120 5.7x 10 1.1x108
2 3 756897264 1.3x10% 1.7 x 1013
2 4 291957888  5.3x10% 1.8 x 10°
3 3 2905079520 4.9 x 10%’ 1.7 x 10'8
3 4 404946240 3.0x 103 7.5 x 10%
4 4 448496928 2.8 x10% 6.2 x 103

Table 1: Number of operations (each operation is a complex multiplication and addition) required to com-
pute all independent spinor components of the correlation function with Np protons and Ny neutrons with
one quark source and relativistic operators. Both the naive number and the number using the recursive ap-
proach are given. 7 is the gain factor, that is, the ratio of the naive and the recursive numbers of operations.

operators at the source and at the sink. This algorithm scales as

3nfin§ NN,

u w?

n (6.5)

where N,, and N}, are the number of such independent structures up to permutations of quarks at
the source and at the sink, respectively. This algorithm is especially efficient in the case where
the numbers of quarks n,, ny and n, are chosen such that all possible spinor- and color-DoFs are
fully saturated both at the source and at the sink. In this case N,, = N}, = 1. Such combinations of
operators can be found for the nuclei 4He, 8Be, 12C, 1°0 and 28Si for which concrete results are
presented in [10]. However, in the general case the numbers N,, and N}, may become very large
and in fact scale exponentially as already noted in [10].

If the individual baryons are to have a complex spatial structure, which is required e.g. for the
projection to a definite momentum and angular momentum, it is very difficult to find a combination
of operators for which N,, and N/, remain small. In such cases the algorithm presented in this paper,
which can perform the construction of baryon blocks with complex spatial structure in advance of
the calculation, can be more advantageous.

7. Summary

A method for the construction of correlation function of multi baryon systems was described
for the simplest case. This algorithm allows to construct different parts for the correlation function
in a recursive way. One part is a list of contributing terms, similar to the one used in the unified
contraction algorithm, which is independent of the gauge configuration. The other part is an object

11
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Np Ny spinstate Ny n

0o 2 (0,1) 5544 1

0o 3 (0,1,2) 1360098 1.3

0o 3 (0,1,3) 1360098 1.3

0 4 (0,1,2,3) 54768672 8.1

1 1 (0,0) 2079 2

1 1 (1,0) 2358 2

1 1 0,1) 2358 2

1 1 (1,1) 2079 2

1 2 (0,0,1) 381978 3.7

1 2 (1,0,1) 381978 3.7

1 3 (0,0,1,2) 11717937  28.8

1 3 (1,0,1,2) 11717937  28.8

1 3 (0,0,1,3) 11717937  28.8

1 3 (1,0,1,3) 11717937  28.8

1 4 (0,0,1,2,3) 141103602 321.1

1 4 (1,0,1,2,3) 141103602 321.1

2 2 (0,1,0,1) 8541864 41.2

2 3 (0,1,0,1,2) 44343561  938.7

2 3 (0,1,0,1,3) 44343561  938.7

2 4 (0,1,0,1,2,3) 214572144 14767

3 3 (0,1,2,0,1,2) 163007703 17494.5
3 3 (0,1,3,0,1,2) 181280493 17842.2
3 3 (0,1,2,0,1,3) 181280493 17842.2
3 3 (0,1,3,0,1,3) 163007703 17494.5
3 4 (0,1,2,0,1,2,3) 293717796 566364
3 4 (0,1,3,0,1,2,3) 293717796 566364
4 4 (0,1,2,3,0,1,2,3) 448496928 1.6 x 10’

Table 2: The efficiency of the presented algorithm for the calculation of individual spin components with
relativistic operators. Ny is the number of operations (complex multiplications and additions) required for
the construction of F_. 7 is approximately the ratio of the number of operations required for the unified
contraction algorithm and for the algorithm presented in this paper if additions are taken as much faster than
multiplications. The entries in the the tuple denoted as "spinstate" are the values of the dirac components of
the correlation function.

constructed from blocks of quark propagators which has to be calculated on each gauge configu-
ration. The algorithm exploits the antisymmetric structure of these parts at all intermediate stages.
Generalizations of the algorithm like additional quark sources and projection to spin states where
discussed. The important special case of atomic nuclei was described. Different orders of recursive
operations where considered and the possibility to combine the calculation of several correlation
functions was introduced. A comparison with alternative methods was given.
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