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We investigate interactions between Omega baryons in lattice QCD. Employing the HAL QCD
method, we extract the Omega-Omega potential from the Nambu-Bethe-Salpeter (NBS) wave
function, which are calculated on 2+1 flavor full QCD gauge configurations generated by the
CP-PACS/JLQCD Collaboration at mπ = 875 MeV and mΩ = 2108 MeV. Both a shape of the
potential and the phase shift of the Omega-Omega scattering calculated with it indicate that the
interaction is strongly attractive. We finally discuss a possibility for an existence of a weak bound
state in this system.
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1. Introduction

While hyperon interactions become important in hight density matters such as the core of
the neutron star [1], investigations so far have been mainly focused on the octet sector. A main
reason is, of course, that all decuplet baryons except Omega are unstable due to strong decays.
Furthermore, even for the Omega-Omega case, it is still difficult to investigate their interaction
experimentally due to their short-life time via weak decays. Theoretically, there exists two model
calculations for the omega-omega inyteraction in the J = 0 channel [2, 3] leading to controversial
results: while one reported a weakly repulsive interaction, the other indicated a strong attraction.
The recent lattice QCD calculation using the standard finite volume method[Lueshcer] concluded
that the Omega-Omega interaction is weakly repulsive in this channel: it’s scattering length a =-
0.16±0.22fm [4].

Recently, a new but first-principle method was proposed to investigate nucleon-nucleon inter-
actions in QCD on the lattice [5–7], where the potential can be extracted from the Nambu-Bethe-
Salpeter (NBS) wave function. This method has been generalized to derive potentials including
hyperons (YN and YY) [8–13] and the three-nucleon force [14–16]. In this report, we therefore
employ the HAL QCD method to study the Omega-Omega interaction, by calculating the corre-
sponding potential in lattice QCD. Our results suggest an attractive Omega-Omega interaction in
the J = 0 channel, which seems rather strong.

2. Extraction of potentials

The potential method was originally introduced by the HAL QCD collaboration [5], where
a non-local potential which is defined from the equal time Nambu-Bethe-Salpeter (NBS) wave
functions. For the two Omega system, the NBS wave function is defined as

ψn(⃗r)≡ ⟨0|Ω(⃗r,0)Ω(⃗0,0) |Ω(kn)Ω(−kn); in⟩ (2.1)

where |Ω(kn)Ω(−kn); in⟩is an eigenstate of two-omega in QCD with the energy 2
√

m2
Ω + k2

n, Ω(x)

and Ω(x) are local operators for Omega, whose explicit definition will be given in section 3.1. One
of the most import ant properties here is that the NBS wave function at large r = |⃗r| in QCD has
the same asymptotic form to that of the scattering wave in quantum mechanics. From this fact, one
can define a non-local but energy independent potential from the NBS wave function as

(En −H0)ψn(⃗r) =
∫

d3r′U (⃗r, r⃗′)ψn(⃗r′) (2.2)

where H0 ≡ − 1
2µΩ

▽2 is the non-interaction part of the Hamiltonian, µΩ ≡ mΩ
2 is reduced mass,

En = k2
n/(2µΩ is the kinetic energy in the center-of-mass frame, in two Omega system. The non-

local potential U (⃗r, r⃗′) can be made to be energy-independent. Although we use the non-relativistic
Schrödinger equation to define the potential, no non-relativistic approximation is made here [8].
Of course, potentials are not physical observables, but the potential defined above can reproduce
physical observables such as phases of the S-matirx correctly by construction.
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In lattice QCD simulations, NBS wave unctions can be extracted from the two-Omega corre-
lation function as

CΩΩ(⃗r, t, t0) =
1
V ∑⃗

x

⟨
Ω(t, x⃗+ r⃗)Ω(t, x⃗)Ω(t0)Ω(t0)

⟩
= ∑

n
ψn(⃗r)ane−En(t−t0)+ · · · (2.3)

≃ a0ψ0(⃗r)ane−E0(t−t0), t − t0 → ∞ (2.4)

with an =
⟨
Ω(kn)Ω(−kn); in

∣∣Ω(t0)Ω(t0)
∣∣0
⟩
, where E0 is the smallest energy of the system, and

ellipses represent inelastic contributions.
In this report, we have employed the improved extraction, called the time dependence method

[7], which is given by

(
1

4m
∂ 2

∂ t2 +
1
m
▽2 − ∂

∂ t
)R(⃗r, t, t0) =

∫
d3r′U (⃗r, r⃗′)R(⃗r′, t, t0) (2.5)

where

R(⃗r, t, t0)≡
CΩΩ(⃗r, t, t0)
e−2m(t−t0)

= ∑
n

anψn(r)e−∆Wn(t−t0)+ · · · (2.6)

with ∆Wn ≡ En − 2mΩ. Since all two-Omega elastic scattering states with different n satisfy the
same Schrödinger equation with the same energy-independent non-local potential, the large t − t0
limit necessary for the ground state saturation is no longer required. A condition necessary for this
method to work is that t − t0 should be large enough to suppress both inelastic contributions in the
two-Omega system and excited states in the single-Omega correlation function.

To extract potentials in practice, we employ the derivative expansion of the non-local potential
[5]. We consider the leading-order term at low energies as

U (⃗r,⃗r′) =Vα ′β ′αβ (⃗r)δ (⃗r− r⃗′)+O (⃗▽) (2.7)

where α ′,β ′,α,β = 0 ∼ 3 are spin indices. In this report, we consider a case that the total spin of
two Omega baryons is zero, whose potential depend on r = |⃗r| only.

3. Symmetry of the Omega-Omega system

In this section we discuss a symmetry of the Omega-Omega system.

3.1 Symmetry

A single Omega baryon can not decay to a pair of an octet baryon and a pseudo-scalar meson
in QCD, since the lowest energy pair, Ξ and K, has larger energy than the Omega baryon mass. On
the lattice, we simply define local operators Omega and anti-Omega baryons as

Ωα,k(x)≡ εabcsT
a (x)Cγksb(x)scα(x), Ωα,k(x)≡ Ω†

α,kγ0 = εabcsaα(x)sT
b (x)γk1Csc(x) (3.1)

where a,b,c are color indices, εabc is the totally anti-symmetric tensor, γk is the gamma matrix, α
is the spinor index, and C ≡ γ4γ2 is the charge conjugation matrix.

If a distance between two Omega baryons becomes large, we can neglect interactions between
them. Such asymptotic Omega-Omega states can be classified by the orbital angular momentum
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P =+ P =−
J = 0 S = 0,L = 0 ; S = 2,L = 2 S = 1,L = 1 ; S = 3,L = 3

J = 1 S = 2,L = 2 S = 1,L = 1 ; S = 3,L = 3

J = 2 S = 2,L = 0 ; S = 0,L = 2 ; S = 2,L = 2 ;

S = 2,L = 4

S = 1,L = 1 ; S = 3,L = 1 ; S = 1,L = 3 ;

S = 3,L = 3 ; S = 3,L = 5

J = 3 S = 2,L = 2 ; S = 2,L = 4 S = 3,L = 1 ; S = 1,L = 3 ; S = 3,L = 3 ;

S = 3,L = 5

J = 4 S = 2,L = 2 ; S = 0,L = 4 ; S = 2,L = 4 ;

S = 2,L = 6

S = 3,L = 1 ; S = 1,L = 3 ; S = 3,L = 3 ;

S = 1,L = 5 ; S = 3,L = 5 ; S = 3,L = 7

Table 1: Decomposition of the Omega-Omega system with conserved quantum numbers J and P in terms
of states with a given (L,S).

(L), the total spin (S), the total angular momentum (J) and parity(P), even though conserved quan-
tum numbers in QCD are J and P only. The two fermion state must change a sign under an exchange
of them, while the asymptotic Omega-Omega state with given L and S has a factor (−1)S+L+1 by
the exchange, so that we should have S+L = even. In table1 we decompose states with conserved
quantum numbers J and P in terms of asymptotic Omega-Omega states with given L and S.

3.2 Spin Projection

Since we employ wall sources, which has L = 0 and P =+, in our lattice calculations, the J is
determined by the total spin S generated by the sources.

To construct the Omega-Omega operator which creates the state with the definite total spin S,
let us first define a single spin 3/2 Omega baryon operator with a given Sz as

Ω 3
2 ,

3
2
≡ −(ψΓ+ψ)ψ 1

2
(3.2)

Ω 3
2 ,

1
2
≡ 1√

3
[
√

2(ψΓZψ)ψ 1
2
+(ψΓ+ψ)ψ− 1

2
] (3.3)

Ω 3
2 ,−

1
2
≡ 1√

3
[(ψ

√
2ΓZψ)ψ− 1

2
+(ψΓ−ψ)ψ 1

2
] (3.4)

Ω 3
2 ,−

3
2
≡ (ψΓ−ψ)ψ− 1

2
(3.5)

where Γ± ≡ 1
2(Cγ2 ± iCγ1), ΓZ ≡ −i√

2
Cγ3, so that spin 1 di-quark operators, ψΓ+ψ , ψCΓZψ and

ψΓ−ψ , have Sz = 1,0,−1, respectively, in non-relativistic limit.
Combining these operators, we can construct spin 3 ,spin 2 , spin 1,spin 0 states of Omega-

Omega. The spin 0 state, used in this research, is given by

(ΩΩ)0,0 ≡ 1
2

(
Ω 3

2 ,
3
2
Ω 3

2 .−
3
2
−Ω 3

2 ,
1
2
Ω 3

2 .−
1
2
+Ω 3

2 ,−
1
2
Ω 3

2 .
1
2
−Ω 3

2 ,−
3
2
Ω 3

2 .
3
2

)
. (3.6)

4. Results

4.1 Lattice set up

In our calculation we employ 700 gauge configurations generated by CP-PACS and JLQCD
Collaborations [17] with the renormalization group improved gauge action and the non-perturbatively
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O(a) improved Wilson quark action [17] at β = 1.83 (a ≃ 0.12fm) on the163 × 32 lattice, whose
physical extension becomes L = 1.92 fm. The hopping parameter is (κud , κs ) = (0.13760,
0.13710), which gives mπ = 875(1) MeV and mK = 916(1) MeV. The periodic boundary condition
is imposed on the quark fields along the spatial direction, while the Dirichlet boundary condition is
employed along the temporal direction on the time-slice t = T

2 . To improve statistics, we calculate
nine sources on different time slices per config, where the Dirichlet boundary is always separated
from the source by T

2 . Statistical errors are estimated by the Jackknife method where the bin-size
is taken to be 1 configuration.

4.2 Omega-Omega Potential

We show the central potential between Omega-Omega in the 1S0 channel at t − t0 = 7,8,9
in Fig1, where we use the notation 2S+1LJ to specify quantum numbers of the channel. Overall
structures of potentials are similar to those of NN potentials previously obtained in the lattice
QCD [5]. This potential have repulsive core and deep attractive pocket, whose depth is 70~80
MeV. We observe that time dependence is small except for a long distance part at t = 9, which
seems to be affected by finite volume effect. In future studies, we should investigate a volume
dependence of the potential.
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Figure 1: The central potential Vc(r)between Omega-Omega in the 1S0 channel at t− t0 = 7(blue) ,8(green),
9(red).

4.3 Phase shift and Scattering length

To calculate phase shift and scattering length, we first fit the potential with the form that

V (r) = a1e−a2r2
+a3e−a4r2

+a5e−a6r2
, (4.1)

which gives, for example, a1 =−1.5(0.5)×102MeV, a2 = 2.0(0.6)fm−2, a3 = 2.0(0.9)×102MeV,
a4 = 1.2(1.1)×10fm−2, a5 = 1.0(0.1)×103MeV, a6 = 6.9(1.1)×10fm−2 at t − t0 = 7.
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Using this fit result, we solve the Schrödinger equation in the infinite volume, and we obtain
the phase shift δ (k) in the 1S0 channel. The scattering phase shift δ (k) at a given momentum k can
be obtained as ratio

tanδ (k) = lim
x1,x2→∞

ψk(x2)sin(kx1)−ψk(x1)sin(kx2)

ψk(x1)cos(kx2)−ψk(x2)cos(kx1)
. (4.2)

We show a center of mass energy dependence of the scattering phase shift in Fig. 2, where ECM =

k2/(2µΩ). As shown in the figure, while phase shift calculated from the potential at t=7 suggests
an existence for a bound state, phase shifts from data at t=8 and 9 indicate that the Omega-Omega
interaction is strongly attractive but it may not be strong enough to form a bound state at this quark
mass.

The scattering length a and effective range re are defined by

k cotδ (k) =
1
a
+

1
2

rek2 +O(k4). (4.3)

The fit of k cotδ (k) near k = 0 by the above formula gives 1/a = −2.4(2.5)× 10−1, 9.0(6.9)×
10−2, 2.9(1.2)×10−1 fm−1, and re = 5.0(5.1)×10−3, 5.1(1.0)×10−3, 5.2(1.8)×10−3 fm at t −
t0 = 7,8,9, respectively. Unfortunately, errors of both 1/a and re are quite large, as expected from
Fig. 2.
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Figure 2: Scattering phase shift at t − t0 =7(blue) ,8(green) , 9(red), as a function of the center of mass
energy ECM.

5. Summary

In this paper, we have investigated the Omega-Omega interaction in the channel with the or-
bital angular momentum L=0 and the total spin S=0 in 2+1 flavor lattice QCD, using the method
developed by the HAL QCD collaboration. We find that the central potential obtained from the
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NBS wave function for the 1S0 channel shows attractions at long distance and the repulsive core at
short distance. The phase shift derived from this potential shows that the Omega-Omega interaction
is strongly attractive, while an existence for an Omega-Omega bound sate is unfortunately incon-
clusive at the pion mass in this study. In future we will examine the Omega-Omega interaction at
more lighter pion masses in larger volumes.
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