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The neutralρ and A mesons in a strong magnetic field in SU(2) lattice gauge theory. E.V. Luschevskaya

1. Introduction

Magnetic fields of the order of∼ 2 GeV existed in the early Universe during the electroweak
transition [1]. The values of the magnetic fields in the non-central heavy-ion collisions can reach
the value 15m2

π ∼ 0.29 GeV2 [2].
STAR collaboration has detected the chiral magnetic effectat RHIC in the non-central colli-

sions of gold ions [3, 4, 5]. Later this effect was also observed in the experiment ALICE at LHC
[6]. The strong magnetic field also results to the modification of the phase diagram of QCD. Phe-
nomenological models show that the critical temperature ofthe transition between the phases of
confinement and deconfinement varies with increasing of the external magnetic fieldB, and the
phase transition becomes of first order [7].

The growth of the phase transition temperatureTc was predicted by the models of Nambu-Jona-
Lasinio type: NJL, EPNJL, PNJL [8] and PNJL8 [9], the Gross-Neveu model [10, 11], as well as
the first calculations on the lattice QCD with two quarks [12]. However, the lattice calculations
in QCD with Nf = 2+ 1 revealed thatTc decreases with increasing ofB value [13]. The chiral
perturbation theory gives the decrease ofTc with the growth of field value [14].

It has been shown in the framework of the Nambu-Jona-Lasiniomodel that in the presence of
sufficiently strong magnetic fields (Bc = m2

ρ/e≃ 1016 T) QCD vacuum becomes a superconduc-
tor [15] along the direction of the magnetic field. The transition to the superconducting phase is
accompanied by a condensation of the chargedρ mesons. Calculations on the lattice [16] also in-
dicate the existence of the superconducting phase. We have investigated the behavior of the masses
of the neutralρ with different spin projections= 0 ands= ±1 to the direction of the magnetic
field. Quark propagators were calculated with the chiral invariant fermionic operator. In [17] the
mass of neutral vectorρ meson was calculated in the relativistic quark-antiquark model, the mass
of neutralρ meson with zero spin does not vanishes with the growth of the magnetic field in the
confinement phase in a contradiction with the results of [15].

2. Details of the calculations

The improved Symanzik action has been used for the generation of SU(2) gauge field configu-
rations similarly to our previous work [18]. The calculations were performed on symmetric lattices
with different lattice volumes 144, 164, 184 and lattice spacingsa= 0.0681, 0.0998 and 0.138348
fm.

Fermionic spectrum in the background ofSU(2) gauge fields were calculated using a chiral
invariant overlap operator, proposed by Neuberger [19]. This operator allows to explore the theory
without chiral symmetry breaking.

In a continuous space the analogue of this operator is the Dirac operatorD = γµ(∂µ − iAµ),
the corresponding Dirac equation is

Dψk = iλkψk. (2.1)

The Neuberger overlap operator allows to calculate the eigenfunctionsψk and the eigenvaluesλk

for a test quark in an external gauge field configurationsAµ . Aµ is a sum ofSU(2) gauge fields
and the external abelian uniform magnetic field. From the eigenfunctions of the Dirac operator we
construct operators and correlators.
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Abelian fields interact with quarks, so for the introductionof the external magnetic field it’s
necessary to perform the following substitution

Aµ i j → Aµ i j +AB
µδi j , (2.2)

AB
µ(x) =

B
2
(x1δµ ,2−x2δµ ,1). (2.3)

To match this change with the lattice boundary conditions the twisted boundary conditions for
fermions have been used as described in [20].

The value of magnetic field on the lattice is quantized

qB=
2πk
(aL)2 , k∈ Z, (2.4)

whereq = −1/3e is the charge ofd-quark, there is one type of fermions in the theory,a is the
lattice spacing in physical units. The quantization condition imposes the limit on the minimum
value of the magnetic field. For our calculations it equals to0.386 GeV2 for lattice volume 164 and
lattice spacing 0.1383 fm.

For each value of the quark mass in the intervalmqa= 0.01−0.8 statistical independent con-
figurations of the gluon field have been used.

3. Calculation of the observables

The following observables were calculated

〈ψ†(x)O1ψ(x)ψ†(y)O2ψ(y)〉A (3.1)

whereO1,O2 = γ5,γµ ,ν are Dirac gamma matrices,µ ,ν = 1, ..,4. In the Euclidean spaceψ† = ψ̄
[21]. The correlators (3.1) are defined by the Dirac propagators, for their calculation the inverse
matrix for the massive Dirac operator 1/(D+m) should be found. For M lowest eigenstates Dirac
operator it is represented by the sum

1
D+m

(x,y) = ∑
k<M

ψk(x)ψ†
k (y)

iλk+m
. (3.2)

In this workM = 50 was used. On the lattice in the background of a gauge fieldAµ the observables
(3.1) have the form

〈ψ̄O1ψψ̄O2ψ〉A = ∑
k,p<M

〈k|O1|k〉〈p|O2|p〉− 〈p|O1|k〉〈k|O2|p〉
(iλk+m)(iλp+m)

(3.3)

The first term in the numerator represents a disconnected part, and the second one with a minus
sign - a connected part. The first term is less than the second one, has large statistical errors, does
not affect the result, so for further calculations only the connected part of the correlator was used.

The mass of the neutralρ meson was obtained from the correlator of vector currents〈 jVµ (x) jVν (y)〉A,
where jVµ (x) = ψ†(x)γµ ψ(x). The correlator〈 jPS(x) jPS(y)〉A gives the mass of theπ meson, where
jPS= ψ†(x)γ5ψ(x) is the pseudoscalar current.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
4
4

The neutralρ and A mesons in a strong magnetic field in SU(2) lattice gauge theory. E.V. Luschevskaya

For the calculation of meson masses we used the method, basedon the spectral expansion of
the lattice correlation function

C(nt) = 〈ψ†(~0,nt)O1ψ(~0,nt)ψ†(~0,0)O2ψ(~0,0)〉A = ∑
k

〈0|O1|k〉〈k|O†
2|0〉e−nt aEk, (3.4)

C(nt) = A0e−ntaE0 +A1e
−ntaE1 + ..., (3.5)

whereA0, A1 are some constants,E0 is the energy of the lowest state, for the particle with average
zero momentum~p = 0 its energy coincides with its massE0 = m0, E1 is the energy of the first
excited state,a is the lattice spacing,nt is the time coordinate on the lattice. From the expansion
(3.5) one can see that for large valuesnt the main contribution comes from the ground energy state.

Due to the periodic boundary conditions the contribution ofthe ground state into the propaga-
tor of a meson has the form

f (nt) = A0e−ntaE0 +A0e
−(NT−nt)aE0 = 2A0e−NTE0/2 cosh((NT −nt)aE0) (3.6)

The mass value of the ground state mass can be obtained, fitting the correlator by the function (3.6),
nt is the number at lattice site in the time direction.

The second method which we use is the Maximal Entropy Method (MEM) [22]. The imaginary-
time Euclidean correlatorG(τ ,~p) =

∫

d3 x〈O(τ ,~x)O†(0,~0)〉e−i~p~x is related to the spectral function
ρ(ω ,~p) according to

G(τ ,~p) =
∫ ∞

0

dω
2π

K(τ ,ω)ρ(ω ,~p). (3.7)

In generalρ(ω ,~p) contains the all properties of mesons and hadrons. We consider zero mo-
mentum case〈~p〉 = 0 and drop the momentum dependence in the following. The firstpeak in the
spectral function corresponds to the energy of the ground state. The kernel in (3.7) is given by

K(τ ,ω) =
cosh[ω(τ −1/2T)]

sinh(ω/2T)
, (3.8)

whereT is the temperature,τ is the euclidean time,ω is the frequency. For the calculation of the
spectral function an inversion of (3.7) has to be performed.

On the lattice this problem is ill-defined, because the correlatorG(τ) is calculated numerically
at the discrete set of pointsτi = τmin+(i−1)a, i = 1, ...Nτ andNτ = 1/(aT) is typically of the order
of O(10). The integral was approximated by a discrete sum at the points ωn = n△ω , n= 1, ...,Nω

andNω is usually∼ O(103). We cut off the integral (3.7) at someωmax. All the same the inversion
becomes impossible. But the ideas of Bayesian probability theory allow to overcome this difficulty.

The most probable spectral functionρ(ω) can be constructed if we find the maximum of the
conditional probabilityP[ρ |DHαm], whereD is the data,H is our hypothesis,α is a real and
positive parameter,m= m(ω) is a default model. This procedure is equivalent to a maximization
of the free energyF = L−αS, whereS is the Shannon entropy term, defined by the following way

S=

∫ ∞

0
dω

[

ρ(ω)−m(ω)−ρ(ω) ln
ρ(ω)

m(ω)

]

. (3.9)

L is the standard likelihood function, the detailed explanation how to make a corresponding dis-
cretization on the lattice is given in [22]. The parameterα balances the relative importance of the

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
4
4

The neutralρ and A mesons in a strong magnetic field in SU(2) lattice gauge theory. E.V. Luschevskaya

data and the prior hypothesis. We takeα ∈ [αmin,αmax] and average the data over this interval. This
interval was choosen in such way that the results vary slightly, for approximately 10%.

The kernel (3.8) contains divergence atω = 0 leading to the unstable behaviour of the proce-
dure at small energies. The Bryan’s key idea was to redefine the kernel and spectral function

K̄(ω ,τ) =
ω
2T

K(ω ,τ), ρ̄(ω) =
2T
ω

ρ(ω), (3.10)

so thatK(ω ,τ)ρ(ω)= K̄(ω ,τ)ρ̄(ω) and apply the SVD theorem to the modified discretized kernel
K̄(ωn,τi), see [23]. We use this modified algorithm to determine the spectral function in the form

ρ̄(ω) = m̄(ω)exp
N

∑
i=1

c̄i ūi(ω). (3.11)

The column vectorsui , (i = 1, ..,N) are normalized

〈ui |u j〉 ≡
Nω

∑
n=1

ui(ωn)u j(ωn) = δi j , (3.12)

ci are the coefficients and we setK̄(0,τ) = 1.
To reconstruct the spectral functionρ(ω) we have to choose the default model ¯m(ω) in a

correct way. The default model should describe correctly the high and low energy behaviour of the
spectral function. Following the analysis of [24] we chooseit in the form

m̄(ω) = maω +mb, ma =
G(Nτ/2)

T2 , mb = aH
3

8π2 , (3.13)

aH = 1 for scalar and pseudoscalar channel,aH = 2 for the vector and axial vector channel [25].
We also try another default model (constant function,∼ ω2, vary thema andmb), but the choice
(3.13) gives the best convergence for MEM.

4. Results

At first we calculate the mass of the neutralπ meson on the lattice from the correlators of the
pseudoscalar currentsCPSPS(nt) = 〈 jPS(~0,nt) jPS(~0,0)〉A, where jPS(~0,nt) = ψ̄(~0,nt)γ5ψ(~0,nt). At
Fig.1 (left) the squared pion mass is depicted for 164 lattice volume, different bare quark masses
and different values of the magnetic fieldH =

√
eB. Fig.1 (left) reveals the linear dependence of

the squaredπ meson mass versus the bare quark mass. The Chiral Perturbation Theory (ChPT)
predicts the linear dependence according to the relation

f 2
π m2

π = mren
q 〈ψ̄ψ〉, (4.1)

where fπ is the pion decay constant,〈ψ̄ψ〉 is the chiral condensate,mren
q is the renormalized quark

mass. In the limit of zero quark mass the pions are massless. The pion masses are slightly shifted
relatively zero due to the quark mass renormalization on thelattice. The value of the shift corre-
sponds to the quark mass renormalization.

Fig.1 (right) represents theπ meson mass versus the value of the squared magnetic field after
the quark mass renormalization. For the renormalized pion mass we get the linear mass dependence

5
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Figure 1: The squared mass of the neutralπ meson extracted from the pseudoscalar correlatorCPSPS(nt)

versus the bare lattice quark mass for the lattice volume 164, lattice spacing 0.1155 fm,β = 3.2000 and
different values of the external magnetic field (left). The mass of the neutralπ meson depending on the
squared value of magnetic field for renormalized and nonrenormalized quark mass (right). The all results
were obtained by coshinus function fit.

from the magnetic field, the slope is negative in accordance with the results of A.Smilga, obtained
with the Chiral Perturbation Theory [26]. The value of the slope is smaller and differs from ChPT,
because we explore theSU(2) gauge theory without dinamical quarks.

At Fig.2 (left) theρ meson mass versus the bare quark mass is represented at zero external
magnetic field. The extrapolation to the infinite physical volume have been performed. The masses
are calculated from the correlators of vector currents, thesymmetry between the different spatial
directions has been taken into account, thereby we improve statistics in three times. The quark mass
renormalization have not considered because it is very small at zero magnetic field. We extrapolate
mρ to the quark massmq0 corresponding to the physical value of theπ meson mass equal 135 MeV.
The vector meson massmρ ≃ 980±30 MeV for the lattice spacinga= 0.1338 fm and 1020±20
MeV for a= 0.1155 fm inSU(2) gluodynamics.

If the external magnetic field is directed along the third coordinate axis then the meson masses
with zero spin projection to the direction of the external magnetic field are calculated from the
expression (3.3) withO1,O2 = γ3. Fig.2 (right) shows the mass of the neutral vector meson with
zero spin obtained by the Maximal Entropy Method at different lattice volumes, spacings and bare
quark masses. The mass decreases with the growth of the magnetic field for the all sets of data.
Errors were calculated taking into account theω-discretization.

The masses of the vector meson were calculated for various values of the magnetic field. For
the nonzero magnetic field the quark mass renormalizationδmren

latt has been taken into account. It
depends on the lattice volume, lattice spacing and the magnetic field value. Therefore we calculate
theπ meson mass for various values ofmq (the bare quark mass which enter into lattice lagrangian).
We extrapolate the mass to small values ofmq, fix the value of the bare quark massmq0 correspond-
ing to the physical value of theπ meson mass at zero magnetic field (135 Mev). We calculate theρ
mass for several values ofmq in the intervalmq = 0.01÷0.8, perform fits and find the coefficients
ai andbi in the equations

mρ(s= 0) = a0+a1mq, (4.2)
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Figure 2: The mass of the neutralρ meson for the different quark masses and two lattice spacings obtained
by coshinus function fit. The extrapolation was performed tothe physical pion meson massmπ = 135 MeV
(left). The mass of the neutral vectorρ meson with zero spins= 0 depending on the magnetic field value
for the lattice volumes 144, 164, 184 and lattice spacingsa= 0.0998, 0.1155 fm, obtained by the Maximal
Entropy Method (right).
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Figure 3: The mass of the neutral vectorρ meson with spins= 0 depending on the external magnetic
field for the lattice volumes 164, 184 and lattice spacingsa = 0.0998, 0.1155 fm (left). The mass of the
neutral vectorρ meson with spins=±1 versus the magnetic field value for the lattice volumes 164, 184 and
lattice spacingsa= 0.0998, 0.1155 fm (right). The results were obtained after quark mass extrapolation by
coshinus function fit.

mA(s= 0) = b0+b1mq (4.3)

and then extrapolatemρ(mq) to the physical valuesmρ(mq0) at mq = mq0 using (4.2) and (4.3).
Different components of the correlators of vector currentswere calculated, diagonal compo-

nents are essentially nonzero, while nondiagonal ones are zero within the error bars. The correla-
tors of vector currents perpendicular to the magnetic field areCVV

11 (nt) = 〈 jV1 (~0,nt) jV1 (~0,0)〉A and
CVV

22 (nt)= 〈 jV2 (~0,nt) jV2 (~0,0)〉A, wherejV1 (~0,nt)= ψ̄(~0,0)γ1ψ(~0,nt) and jV2 (~0,nt)= ψ̄(~0,0)γ2ψ(~0,nt).
The masses with spins= ±1 are found from the relationsCVV(s= 1) = (CVV

11 + iCVV
22 )/

√
2 and

CVV(s=−1) =−(CVV
11 − iCVV

22 )/
√

2.
At Fig.3 (left) the mass of the neutralρ meson with zero spin is shown depending on the

magnetic field value. For the all lattice volumes 164, 184 and spacingsa = 0.0998, 0.11558 fm
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Figure 4: The mass of the neutral axialA meson with zero spins= 0 versus the value of the external
magnetic field for the lattice volumes 144 and 164 and different lattice spacings, obtained by the Maximal
Entropy Method (left). The mass of the neutral axialA meson with different spins depending on the magnetic
field value for the lattice volumes 164, 184 and lattice spacingsa = 0.0998, 0.1155 fm. The data were
obtained by coshinus function fit (right).

the mass decreases with the magnetic field. The points are connected by splines to guide the eyes.
Fig.3 (right) shows the mass of theρ meson mass with nonzero spin versus the field value. The
masses with spins= ±1 increase with the field. The results were obtained after thequark mass
extrapolation.

We observe a weak dependence of masses from the lattice volume and lattice spacings, but the
qualitative behaviour of the masses with the magnetic field is the same.

Fig. 4 (left) shows the behaviour of the neutral axial meson mass with zero spin depending on
the external magnetic field calculated by the Maximal Entropy Method.

At Fig. 4 (right) we see the mass of the neutral axial meson with zero spins= 0 and nonzero
spin projectionss= ±1 to the direction of the magnetic field. The calculation of the axial meson
mass needs much more statistics, than for the vector meson, especially for nonzero spin compo-
nents. The mass ofA with zero spin decreases, the masses withs=±1 increase slowly.

Unfortunately on the lattice in the presence of the magneticfield the quantum numbers of
mesons are not precise. The mixing takes place due to the interaction between photons and vector
(axial) quark currents and can occur between neutral pion and neutralρ or A meson with zero spin.
No severe methods occurs to disentangle these two states in the magnetic field. However we have
indications that the masses of vector and axial mesons withs=±1 definitely increase in ourSU(2)
theory. The investigations of the mass behaviour in QCD withdynamical quarks present the huge
interest.

5. Conclusions

In this work we explore the masses of the neutralπ, ρ andA mesons in the background of
the strong magnetic field of the hadronic scale in the confinement phase. The masses with zero
spin projection to the magnetic field differ from the masses with spin projections= ±1. The
masses withs= 0 decrease with the magnetic field, the masses withs=±1 increase with the field.
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We consider this phenomena to be the result of the anisotropy, which the strong magnetic field
creates. We do not observe any condensation of the neutral mesons, so there are no evidences of
superfluidity in the confinement phase. However the presenceof superconducting phase at high
values of the magnetic fieldB [27] in QCD is a hot topic for discussions. The condensation of
chargedρ mesons would be an evidence of the existence of the superconductivity in QCD.

The authors are grateful to ITEP supercomputer center (the calculations were performed at su-
percomputers "Graphin" and "Stakan"), Moscow Supercomputer JSCC Center. Athors are grateful
to M.I.Polikarpov, M.N.Chernodub for the usefull discussions and comments.
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