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Fine lattice simulations with chirally symmetric fermions J. Noaki

1. New simulation setup

Motivated by increasing phenomenological importance of heavy flavor physics, we started a
new set of lattice configuration generations at fine lattice spacings. For heavy quarks we are testing
a new lattice formulation designed to suppress discretization effects [1], while for light sea/valence
quarks we require good chiral symmetry to control possible systematic effects near the physical
light quark masses. We use a variant of domain-wall fermions [2, 3], as described below, together
with the tree-level Symanzik gauge action, for our 2+1-flavor gauge configuration generations.

Using the Wilson-Dirac operator DW (−M) with a negative mass parameter −M, our Dirac
operator is defined by

D5
DW(m)ss′ = [(4+M)DW (−M)(b+ cL(m))+1−L(m)]ss′ , (1.1)

L(m)ss′ =


−mP+δs′,Ls +P−δs,s′−1 (s = 1)
P+δs,s′+1 +P−δs,s′−1 (1 < s < Ls)

P+δs,s′+1 −mP−δs′,1 (s = Ls),

(1.2)

where s and s′ are indices of the 5th direction of size Ls and m is the bare quark mass. Through a
study of the residual quark mass [2, 3], we choose parameters b and c as b = 2, c = 1 and M = 1.0.
With 3 steps of the stout smearing, the residual mass is suppressed to the level of 0.5 MeV or
better with Ls ≤ 12. Other details of the numerical simulation are summarized in ref. [2]. We are
developing a new code set called IroIro++ for this project [4].

The four-dimensional effective operator is constructed as

D4
DW(m) =

[
P−1D5

DW(m = 1)−1D5
DW(m)P

]
11 , (1.3)

where P = δss′P−+δs+1(modLs),s′P+ projects onto the four dimensional surfaces. For the 5D oper-
ator (1.1) this leads to

D4
DW(m) =

1+m
2

+
1−m

2
γ5 tanh

(
Ls tanh−1

(
γ5

bDW

2+ cDW

))
, (1.4)

which satisfies the Ginsparg-Wilson relation in the limit of Ls → ∞.
Table 1 lists gauge ensembles we are generating. We carry out main runs at a physical volume

≈ L3 =(2.6 fm)3. Two values of the gauge coupling β = 4.17 and 4.35 correspond to a−1 ≈ 2.4 and
3.6 fm, respectively, and we are planning to generate even finer lattices in the future. The extrapo-
lation to the physical light quark mass is made from the data in the range of 240 MeV< mπ < 500
MeV. The physical strange quark mass is sandwitched by two values of ms. We designed our main
runs to satisfy mπL >∼ 4, hence the artifact of finite volume is under good control. Simulation with a
small mπL is also done at the lightest mass mud = 0.0035 with L = 32 for a direct study of the finite
volume effect. In the last two columns of the table, we summarize the number of generated HMC
trajectories after thermalization with unit MD length of τ = 1 and 2. A check of the thermalization
and the motivation for adding the τ = 2 runs will be explained in Sec. 4. The analyses we present
in this article are all from the τ = 1 runs.
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β L5 size ms mud mπ [MeV] #trajs (τ = 1) #trajs (τ = 2)
4.17 12 323 ×64 0.030 0.0070 310 3,000 –

0.0120 400 3,000 –
0.0190 500 3,000 –

323 ×64 0.040 0.0035 240 3,000 –
0.0070 310 3,000 –
0.0120 400 3,000 –
0.0190 500 3,000 –

483 ×96 0.040 0.0035 240 1,500 –

4.35 8 483 ×96 0.018 0.0042 290 500 280
0.0080 410 1,800 260
0.0120 500 2,000 –

483 ×96 0.025 0.0042 290 700 235
0.0080 410 680 330
0.0120 500 1,550 430

Table 1: Profiles of the generated gauge ensembles. The last two columns show the number of the thermal-
ized trajectories for τ = 1 and τ = 2 which have been accumulated.

2. Scale setting by the Wilson flow

We determine the lattice scale a−1 of the generated configurations through the Yang-Mills
gradient flow [5], which is an evolution of gauge configuration Vxµ(t) in a fictitious time t following

dVxµ

dt

∣∣∣
t
=−g2

0∂xµSg[V ], Vxµ(0) =Uxµ . (2.1)

Here g0 is the bare gauge coupling and Sg is the Wilson gauge action. In steps of 10 trajectories, we
compute the energy density E = 1

4 Fa
µνFa

µν evaluated on {Vxµ} at a reference point t0 or w0 satisfying
the conditions [5, 6]

t2 ⟨E⟩ |t=t0 = 0.3, t
d
dt
(t2 ⟨E⟩)

∣∣∣
t=w2

0

= 0.3. (2.2)

To reduce discretization effects in E, we use its improved definition with the clover-leaf terms. In
Figure 1, data of t2 ⟨E⟩ are shown for β = 4.17, ms = 0.030 (left) and 4.35, ms = 0.018 (right).
Although w0 at larger t region is supposed to suffer less from cutoff effects than t0 does, we use
t0 to determine the lattice spacing in our preliminary study as it is more stable as a function of the
quark mass. As a preliminary result, we obtain

β = 4.17 : a−1 = 2.48(1) GeV, β = 4.35 : a−1 = 3.68(1) GeV, (2.3)

where we only quote statistical errors. Study of other systematics such as finite size effect are to be
done with improved statistics in the future.
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Figure 1: t2 ⟨E⟩ as a function of the flow time t. Side by side, data from β = 4.17 and ms = 0.030 (left)
β = 4.35 and ms = 0.018 (right) are shown. In each panel, different colors correspond to different gauge
ensembles with different mud.

3. Light hadron spectrum with the all mode averaging

On the generated configurations, we compute quark propagator

⟨qxq̄y⟩=
1

1−m

(
D4

DW(m)−1
xy −δxy

)
, (3.1)

where an inverse of the 4D-operator is obtained through eq. (1.3). We use a source vector e−αr

in the Coulomb gauge as a function of the distance r from the center of the source with α = 0.4
and 0.2 for β = 4.17 and 4.35, respectively. Since the statistical error in the hadron two-point
correlation functions is large with our limited samples, we use the all-mode-averaging (AMA)
technique [7], where, besides the data with the desired precision C(t), we generate Cbulk(t) with a
relaxed precision at as many source locations as possible. C(t) is improved by averaging over Ns

and Nbulk
s time-slices for the regular precision part and for the bulk part as

C(t)→ 1
Ns

Ns

∑
ts=1

(
C(t ; ts)−Cbulk(t ; ts)

)
+

1
Nbulk

s

Nbulk
s

∑
ts=1

Cbulk(t ; ts), (3.2)

where, in the right hand side, we explicitly indicate the source location ts as well as the time
distance t from the source location. The averaging in the second term requires a lower cost than
the conventional one because of the relaxed convergence condition.

On every 10 trajectories of the β = 4.17 configurations of size 323 × 64, we take Ns = 2 and
Nbulk

s = 32 equally separated time-slices. The number of CG-iterations for each solve of Cbulk(t)
is ≈ 10% of that of C(t)’s and the total cost for Nbulk

s = 32 is compatible with that of the Ns = 2
inversions with the regular precision. In Figure 2, the effective masses of pseudo-scalar (upper
left), vector (upper right) mesons and nucleon (lower) at ms = 0.030 are shown. The different
colors correspond to different mud’s. In each panel, we compare the case with AMA (eq. (3.2),
filled symbols) and without (i.e. 1

Ns
∑ts C(t; ts), open symbols). We observe that the plateau is
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Figure 2: Effective mass plots of pseudo-scalar (upper left), vector (upper right) mesons and nucleon (lower)
at β = 4.17 and ms = 0.030. Data with the all-mode-averaging applied (filled) are compared with the
conventional ones (open) in each panel.

visible with AMA in the t region of t >∼ 12. With the total costs which is about three times more
than the case with the conventional method (Ns = 2), the gain amounts to 30–50% decrease of the
statistical error.

An important question to address is how large Nbulk
s is really needed to obtain the signal at the

level of that with Nbulk
s = 32. We examined the size of error for the vector-meson effective mass at

several time-slices by repeating the same analyses with Nbulk
s = 4,8 and 16, and found a saturation

to start at Nbulk
s = 8. Based on this observation, the measurement on the β = 4.35 configurations

are being done with Nbulk
s = 8, i.e. at time-slices in steps of 12.

4. Thermalization and auto-correlation

Since we are generating gauge configurations at a fine lattices especially for the fine lattice
at β = 4.35, the issue of critical slowing down, i.e. long thermalization and auto-correlation may
arise. Before going to more advanced physics analysis, a detailed study is necessary.

A simple way to check the thermalization is to monitor the plaquette on generated configura-
tions, which is shown in the light panels of Figure 3. Upper and lower panels are those for two
smallest ud-quark masses respectively. From them, the configurations seem to be thermalized in
both cases. On the other hand, the histories of the CG-iteration counts in the right panels seem to
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Figure 3: HMC histories of plaquette (upper left panels), CG-iteration count (upper right) and t2E at t = 7.5
for a β = 4.35 run (bottom). Data of the lightest two mud’s with ms = 0.018 are compared between upper
and lower panels for each quantity.

be increasing in the same trajectory region especially before 2,000. Such a long thermalization pro-
cess is more prominent when the dimensionless energy density t2 ⟨E⟩ on the Yang-Mills gradient
flow (at t = 7.5) is monitored (bottom panels). We also looked at the values of hadron correlators
at specific time-slices. By using the data measured on the configurations in question, we examined
pion, ρ , nucleon and Ω. Except for pion, we found that the correlators are monotonically drifting
in the same region of trajectories which become more significant at the time-slices far apart from
the source. In other words, these quantities are sensitive to the thermalization and auto-correlation.
We also checked thermalizations and autocorrelations for the β = 4.17 data and found no such
non-trivial behavior.

To partly cure the long auto-correlation problem, we doubled the MD trajectory length (τ = 2)
followed by the suggestion given in ref. [8]. The numbers of accumulated new trajectories at the
time of presentation are listed in the last column of Table 1.
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5. Outlook

Plotting the results of mπ , mK and mηs obtained with the current data, we find that the PCAC
relation is reasonably satisfied. On the other hand, we need more statistics before studying the
chiral properties of these masses and other basic observables such as fπ , fK and nucleon masses.
Other studies of the chiral symmetry dynamics [2, 3, 9] and the charm quark physics [1] are also in
progress.

Numerical simulations are performed on the IBM System Blue Gene Solution at High Energy
Accelerator Research Organization (KEK) under a support of its Large Scale Simulation Program
(No. 12/13-04). This work is supported in part by the Grant-in-Aid of the Japanese Ministry of Ed-
ucation (Nos. 21674002, 25287046, 25800147) and the SPIRE (Strategic Program for Innovative
Research) Field5 project.
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