
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
6
8

Non-degenerate light quark masses from 2+1f lattice
QCD+QED

Shane Drury∗

School of Physics & Astronomy, University of Southampton, SO17 1BJ, UK
E-mail: srd1g10@soton.ac.uk

Tom Blum
Physics Department, University of Connecticut, Storrs, CT 06269, USA and
RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
E-mail: tblum@phys.uconn.edu

Masashi Hayakawa
Department of Physics, Nagoya University, Nagoya 464-8602, Japan
E-mail: hayakawa@eken.phys.nagoya-u.ac.jp

Taku Izubuchi
Brookhaven National Laboratory, Upton, NY 11973, USA and
RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
E-mail: izubuchi@bnl.gov

Chris Sachrajda
School of Physics & Astronomy, University of Southampton, SO17 1BJ, UK
E-mail: cts@soton.ac.uk

Ran Zhou
Fermi National Accelerator Laboratory, Batavia, Illinois, USA and
Department of Physics, Indiana University, Bloomington, IN, USA
E-mail: zhouran@indiana.edu

We report on a calculation of the effects of isospin breaking in Lattice QCD+QED. This in-
volves using Chiral Perturbation Theory with Electromagnetic corrections to find the renormal-
ized, non-degenerate, light quark masses. The calculations are carried out on QCD ensembles
generated by the RBC and UKQCD collaborations using Domain Wall Fermions and the Iwasaki
and Iwasaki+DSDR Gauge Actions with unitary pion masses down to 170 MeV. Non-compact
QED is treated in the quenched approximation. The simulations use a 323 lattice size with
a−1 = 2.28(3) GeV (Iwasaki) and 1.37(1) (Iwasaki+DSDR). This builds on previous work from
the RBC/UKQCD collaboration with lattice spacing a−1= 1.78(4) GeV.
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Light quark masses from lattice QCD+QED Shane Drury

1. Introduction

Lattice simulations in particle physics have traditionally been performed in the isospin limit
(i.e. with mu = md) and without QED (i.e. the charge is zero for all quarks). Now that the precision
of some of the results is approaching numbers of the order of 1%, the isospin breaking effects must
be included. The current values quoted by the Particle Data Group [1] are summarised as

mu = 2.3+0.7
−0.5 MeV qu =+

2
3

e

md = 4.8+0.7
−0.3 MeV qd =−1

3
e . (1.1)

Perhaps the most noticeable way in which the breaking of isospin symmetry manifests itself is
in the mass splitting of the pseudoscalar meson octet. For instance, the charged and neutral pions,
which are made of up and down quarks would have the same mass if isospin were conserved.
Experimental measurements show a 4.6 MeV difference which is about 3% of the mass of the
neutral pion.

The baryon sector shows a similar difference. Protons and neutrons, which are also made from
up and down quarks, have a 1.3 MeV mass difference which is a 0.1% effect [1]:

mp−mn =−1.2933322(4) MeV . (1.2)

This tiny difference, however, is very important as it plays a role in β -decay and nuclear stability
since the sign of the mass difference makes the proton and the hydrogen atom stable. The expected
size of isospin breaking effects is roughly 1% . Since we are in an era of lattice calculations that
probe this level of accuracy, it is necessary to include effects of this order. We need to be able to
accurately predict the experimental results to confirm that the theory of QCD and ultimately the
Standard Model is correct. The main goal of this work is to find the non-degenerate up, down and
strange quark masses. For a review of the current status of calculations see [2] and [3]. This work
builds upon [4] (historical), [5] and [6].

2. Details of Simulation

The calculations are carried out on QCD ensembles generated by the RBC and UKQCD col-
laborations, using domain wall fermions (DWF) with 2+1 flavours and Iwasaki gauge action. Pre-
vious work [6] has relied on two lattice sizes: 163×64×16 and 243×64×16, which have volume
1.8 fm3 and 2.7 fm3 respectively with gauge coupling β = 2.13 and lattice cutoff 1.78 GeV. This
work will extend the study to 323×64 Iwasaki, and will additionally use the Iwasaki+DSDR (Dis-
location Suppressing Determinant Ratio) gauge action [7]. This has lattice cutoff 2.28(3) GeV
for Iwasaki and 1.37(1) GeV for Iwasaki+DSDR. For Iwasaki, there are 3 bare light masses of
0.004, 0.006 and 0.008 combined with one strange of 0.03. The lightest unitary pion for Iwasaki
is 293 MeV. For Iwasaki+DSDR, the light masses are 0.001 and 0.0042 with a strange of 0.045,
which is close to physical. The lightest unitary pion for this lattice is 170 MeV. For each combina-
tion of masses, the charges of each of the quarks are varied from values in the set {−2,−1,0,1,2}
in units of e/3.
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Action β (amud,sea) (amval) (ams,sea) L/a Ncon f a (fm)
I 2.13 0.005 0.001, 0.005, 0.01, 0.02, 0.03 0.04 24 195 0.114

0.01 0.001, 0.01, 0.02, 0.03 180
0.02 0.02 360
0.03 0.03 360

I 2.25 0.04 0.04 0.03 32 131 0.086
0.06 0.06 188
0.08 0.08 81

I+DSDR 1.75 0.001 0.001 0.045 32 13 0.146
0.0042 0.0042 12

Table 1: Summary of ensembles used in present work. Gauge actions are Iwasaki(I) and Iwasaki+DSDR
(I+DSDR).

3. Background Theory

The direct simulation of QED on the lattice poses some technical difficulties. The non-compact
formulation of QED has the action

SQED[A] =
1
4

∫
d4x (∂µAν(x)−∂νAµ(x))2 . (3.1)

This avoids photon self-interactions that the compact formulation would encounter. The action in
Eq. (3.1) describes a free theory and since the action is Gaussian, it is trivial to generate the config-
urations. The generated QED field AQED

µ is promoted to a compact link variable by exponentiating
it. It is then coupled to QCD by multiplying it by the QCD gauge link UQCD

µ ,

Uµ = exp(ieQAQED
µ )UQCD

µ . (3.2)

In quenched QED, the sea quarks are electromagnetically neutral and couple only to UQCD
µ . For this

reason, the QCD gauge links are not generated with the QED action. As a consequence, the QCD
configurations that were previously generated by the RBC/UKQCD collaboration can be reused.

A problem with the photon is immediately encountered. Since it is massless, it propagates a
long distance and finite volume effects may be expected to be large. To counter this, finite volume
correction terms are included in the fits [6, 8]. Another problem comes when the photon propagator
is naively discretised. Refs. [4, 5] estimate the QED finite size scaling by the one-pole saturation
approximation with a momentum integral replaced by a sum. The pion mass-squared difference in
the effective theory including vector and axial mesons then encounters terms such as

∫ dk0

2π

1
L3 ∑

k∈Γ̃3

m2
V m2

A

k2(k2 +m2
V )(k2 +m2

A)
(3.3)

where Γ̃3 ≡ {k = (k1,k2,k3) | k j ∈ 2π

L Z}, L is the length of the lattice in the spatial direction,
mV ' 770 MeV and mA ' 970 MeV is the chiral limit mass of the A1. The k = 0 term of this sum
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diverges for finite volume. We notice that any single point of the integral has measure zero, so the
value of the integral is not changed if we change one point. For the sum, we then take the first term
of the series to zero to remove the zero mode of the photon propagator. This approach is justified in
[8]. In this work the Feynman gauge is used to gauge fix non-compact QED. For another discussion
see [9].

According to Dashen’s theorem, the lowest order EM effect, the Dashen term entering at
O(αEM), is the dominant contribution to the charged-neutral pion mass difference. As the chiral
limit is approached (i.e. massless quarks), this relation also holds for kaons. This can be sum-
marised by the relation

∆QEDM2
K−∆QEDM2

π = 0 , (3.4)

where ∆QEDM2
P = (M2

P± −M2
P0)mu=md for P = π,K. The relation in Eq. (3.4) is violated by

O(αEMm) terms away from the chiral limit. Using chiral perturbation theory [10], these corrections
can be identified. It is then possible to find the non-degenerate quark masses by matching to exper-
imentally measured mass splittings. These violations to Dashen’s theorem can be parametrised by
the FLAG parametrisation [11]

ε =
∆QEDM2

K−∆QEDM2
π

∆M2
π

. (3.5)

Since the simulations have unnaturally large up and down masses, the pions will have a larger
mass too. It is therefore necessary to know how the masses of the pion and kaon change as a
function of the input masses. Chiral perturbation theory can be used to find the mass-squared of the
pion and kaon as a function of the quark masses and charges. As a consequence of doing this, low
energy constants (LECs) are also necessary, which are non-perturbative coefficients to the various
terms in the equations. This work uses SU(2)× SU(2) chiral perturbation theory for the pions
including photons to next to leading order (NLO) including the kaons [6]. This includes one-loop
logs proportional to αemm. It was found in [12] that SU(3) was poorly convergent for masses close
to the physical strange mass, making it inappropriate for finding physical results.

The mass-squared of the pion and kaon are functions of the input masses and charges [6]. The
mass-squared formulae also depend on the QCD and QED low energy constants, which will need
to be fit and calculated. For example, the (infinite volume) mass-squared of the pion as a function
of the masses and charges is

M2 = χ13

{
1+

24
F2 (2L6−L4)

χ4 +χ5

3
+

8
F2 (2L8−L5)χ13

+
1
2

1
16π2F2

(
Rπ

13 χπ log
χπ

µ2 +R1
π3 χ1 log

χ1

µ2 +R3
π1 χ3 log

χ3
2

)}
−12e2Y1q̄2

χ13 +4e2Y2q2
pχp +4e2Y3q2

13χ13−4e2Y4q1q3χ13 +12e2Y5q2
13

χ4 +χ5

3

− e2 3
16π2 χ13 log

χ13

µ2 q2
13 + e2 1

4π2 χ13q2
13 +

2Ce2

F2 q2
13 + e2

δmres(q
2
1 +q2

3)

− e2 C
F4

1
8π2 q13

(
q14χ14 log

χ14

µ2 +q15χ15 log
χ15

µ2 −q34χ34 log
χ34

µ2 −q35χ35 log
χ35

µ2

)
, (3.6)
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mu (MeV) md (MeV) mu/md md−mu (MeV)
Infinite Volume 2.264(82) 4.815(40) 0.471(18) 2.551(97)
Finite Volume 2.137(85) 4.680(45) 0.457(19) 2.543(98)

Table 2: Preliminary results for 323×64×16 Iwasaki ensembles.

where χi j = B(m̃i + m̃ j), m̃i = mi +mres where mi is the bare quark mass and mres is the residual
mass. The terms mres and δmres are lattice artifacts arising from the finite extent of the 5th dimension
in the formulation of DWF. The definitions of all the terms can be found in [6]. There are 6 QCD
(B,F,L4,L5,L6,L8) and 6 QED LECs (C,Y1,Y2,Y3,Y4,Y5,δmres) to fit. These are defined at the scale
µ = 1 GeV and are highlighted in the equation. The coefficient Y1 is included in the formula for
completion, but since this work is done in quenched QED it cannot be determined. The effect of
neglecting this is included in the estimation of the error in [6].

4. Strategy

In [6], values for the non-degenerate quark masses were found with the 163 and 243 lattices.
This work extends these results with finer 323 ensembles. This will allow a continuum extrap-
olation to be performed while exploiting the finer lattices for improved precision. To find the
non-degenerate light and strange quark masses, the formulae for the mass-squared of the pion and
kaon are matched to experimental values. The charged and neutral kaon and the charged pion are
used and the matching is performed by varying the quark masses simultaneously to minimise the χ2

value of the fit. To do this, charged and neutral mesons are simulated and their masses are found in
the standard way of fitting to exponentials. The mass-squared difference of the charged and neutral
meson are then fit to find the QED LECs first. Since there are many different combinations of the
masses and charges and corresponding mass-squared differences, it is possible to get an estimate of
these LECs by performing best fits of the parameters. The non-degenerate quark masses are then
found by matching the mass-squared formulae to the experimental meson masses by varying the
quark masses simultaneously. The neutral pion is not used to fix the parameters, since this would
involve calculating disconnected diagrams, which have a worse signal to noise ratio than connected
diagrams. Errors on the masses used in the fits are found using the standard jackknife procedure.

5. Results

The non-degenerate up and down quark masses were found by setting ms = 95 MeV and fitting
to the functional forms of M2

K+ , M2
K0 and M2

π+ . Even though there are two fit parameters and three
target quantities naively, the fits are performed with the squared difference of the kaons M2

K+−M2
K0

and M2
π , reducing the number of quantities by one. This is done because it was found that M2

K+

and M2
K0 individually had poor sensitivity to the up and down quark masses but the combination

M2
K+ −M2

K0 was more sensitive. The results are summarised in Tab. 2 for the infinite and finite
volume fits. All results are preliminary. Numbers are quoted in MS at 2 GeV. To also have ms as a
fit parameter, an extra strange quark mass is necessary which is added by using the Iwasaki+DSDR
ensembles. Work is continuing to increase the statistics on these ensembles.
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RBC-UKQCD (2007) [5]

RBC-UKQCD (2010) [6]

PACS-CS (2012) (unquenched QED) [13]

RM123 (2013) (Nf=2) [14]

BMWc (2013) (preliminary)

RBC-UKQCD (2013) (preliminary)

Figure 1: Summary of lattice calculations of the up and down quark mass ratio. Source: [2]

6. Conclusions & Outlook

These results show that it is possible to discriminate small isospin breaking effects in state of
the art lattice simulations. To gain a better understanding it is important to do a global fit of all of
the ensembles that the RBC/UKQCD collaboration have generated. To complete this, efforts are
being made to increase the statistics of the Iwasaki+DSDR ensembles.
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