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We report on a scale determination with gradient-flow techniques on the N f = 2+ 1+ 1 HISQ
ensembles generated by the MILC collaboration. The lattice scale w0/a, originally proposed by
the BMW collaboration, is computed using Symanzik flow at four lattice spacings ranging from
0.15 to 0.06 fm. With a Taylor series ansatz, the results are simultaneously extrapolated to the
continuum and interpolated to physical quark masses. We give a preliminary determination of the
scale w0 in physical units, along with associated systematic errors, and compare with results from
other groups. We also present a first estimate of autocorrelation lengths as a function of flowtime
for these ensembles.
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1. Introduction

Scale setting holds central importance in lattice QCD. The precision with which any dimen-
sionful quantity can be computed is limited by the precision with which the scale is determined
in physical units. Furthermore, continuum extrapolation of any quantity, dimensionful or dimen-
sionless, requires precise determination of the relative scale between ensembles with different bare
couplings. Any dimensionful quantity that is finite in the continuum limit may be used for scale-
setting, but if it is not experimentally measured its value in physical units needs to be determined on
the lattice by comparison to an experimentally determined quantity. An ideal scale-setting quantity
should be easy and cheap to compute on the lattice, have small statistical errors, and be relatively
insensitive to systematic issues, such as finite-volume effects or differences between simulated and
physical quark-mass values. This has led to the consideration of quantities such as r0 and r1, de-
fined from the static quark potential, and, more recently, t0 [1] and w0 [2] from gradient flow [3].
Gradient flow has received a particularly high interest level over the past year, as evident from the
two plenary talks dealing extensively with the flow and its applications [4, 5]. This interest stems
from the particular ease with which a scale from the flow can be computed and the resulting small
statistical errors. Computing the gradient flow requires no costly quark propagator computations
and avoids fits, such as to the asymptotic time behavior of correlation functions or Wilson loops.

Here, we present our computation of w0/a on the MILC HISQ ensembles, and perform a
continuum extrapolation to determine w0 in physical units. We also investigate the autocorrelation
length of the energy density as a function of flow time on these ensembles.

2. Gradient Flow and the Scale w0

Gradient flow [3] is a smoothing of the original gauge fields U towards stationary points of the
gauge action S. Successive links V (t) are updated according to the diffusion equation,

d
dt

V (t)i,µ =−Vi,µ
∂S(V )

∂Vi,µ
, V (t)i,µ(0) =Ui,µ

[
dAµ

dt
= DνFνµ

]
,

where the equation in square brackets is the corresponding continuum flow equation. The flow time
t increases as the gauge fields are smoothed. By repeatedly integrating infinitesimal smearing steps,
the diffusion equation can be solved numerically. Note that the action S is not necessarily the same
as the action used to generate the original gauge fields. As the gauge fields diffuse, high momentum
artifacts of the lattice spacing are removed. Thus, statistical fluctuations and discretization effects
are suppressed while preserving low-energy physics.

To extract the scale using the gradient flow one needs a dimensionful quantity. One of the
simplest is the flow time t which has units of a2. Pick a reference timescale t0 at which a di-
mensionless quantity reaches a predefined value. If this quantity is finite in the continuum limit,
then t0/a2 will be independent of lattice spacing up to discretization corrections in powers of a.
Lüscher [1] has shown the energy density 〈E(t)〉 is finite to next-to-leading order (when expressed
in terms of renormalized quantities), where 〈E(t)〉 = 〈Ga

µν(t)G
a
µν(t)〉/4 and Ga

µν(t) is the clover-
leaf definition of the field strength tensor at flow time t. The reference timescale t0 is chosen to
satisfy t2

0〈E(t0)〉 = 0.3. Based on empirical evidence, the discretization effects can be reduced by
considering the slope W (t) = t d

dt

(
t2〈E(t)〉

)
and defining the new reference timescale w0 where
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(a) Physical strange mass ensembles (m′s = ms)

≈ a(fm) ml/ms volume Nrun w0/a (stat) [%]

0.15 0.2 163×48 1021 1.1221 (06) [0.06%]
0.15 0.1 243×48 1000 1.1381 (04) [0.04%]
0.15 0.037 323×48 999 1.1468 (03) [0.03%]
0.12 0.2 243×64 1040 1.3835 (07) [0.05%]
0.12 0.1 243×64 1020 1.4020 (10) [0.07%]
0.12 0.1 323×64 999 1.4047 (06) [0.05%]
0.12 0.1 403×64 1001 1.4041 (04) [0.03%]
0.12 0.037 483×64 34 1.4168 (10) [0.07%]
0.09 0.2 323×96 102 1.8957 (16) [0.08%]
0.09 0.1 483×96 151 1.9296 (09) [0.05%]
0.09 0.037 643×96 53 1.9473 (11) [0.06%]
0.06 0.2 483×144 127 2.8956 (26) [0.09%]
0.06 0.1 643×144 46 2.9486 (31) [0.11%]
0.06 0.037 963×192 49 3.0119 (18) [0.06%]

(b) Non-physical strange mass ensembles (m′s 6= ms)

≈ a(fm) ml/ms m′s/ms volume Nrun w0/a (stat) [%]

0.12 0.10 0.10 323×64 102 1.4833 (13) [0.09%]
0.12 0.10 0.25 323×64 204 1.4676 (11) [0.07%]
0.12 0.10 0.45 323×64 205 1.4470 (11) [0.08%]
0.12 0.10 0.60 323×64 107 1.4351 (20) [0.14%]
0.12 0.175 0.45 323×64 134 1.4349 (13) [0.09%]
0.12 0.20 0.60 243×64 255 1.4170 (10) [0.07%]
0.12 0.25 0.25 243×64 255 1.4336 (16) [0.11%]

Table 1: Results for w0/a. Nrun is the number of configurations analyzed; ms is the (approximate) physical
strange quark mass, while m′s is the mass value for the ensemble. The m′s = ms, a≈0.12 fm, ml/ms = 0.1,
243×64 ensemble is not included in continuum extrapolations due to large finite volume effects.

W (w2
0) = 0.3 [2]. In both cases, the cutoff of 0.3 is chosen to minimize discretization effects from

small flow times and finite volume effects at large flow times.

3. HISQ Ensemble Results

We have computed the scale w0/a on the MILC N f = 2+1+1 HISQ ensembles [6]. The tree-
level Symanzik improved action is used in the flow, partially for comparison to earlier work with
Wilson flow on the same ensembles by HPQCD [7]. Note that the energy density is computed with
the clover-leaf definition of the field strength tensor; thus, the final scale w0 is not Symanzik im-
proved. Numerical integration is performed with the fourth-order Runga-Kutta scheme originally
proposed in Ref. [1]. We found a step size of ε = 0.03 sufficient to render integration step-size
errors negligible. Results for each ensemble are compiled in Table 1.

As can be seen in Table 1, the statistical error of w0/a is below 0.1% for almost all ensembles.
Furthermore, the gradient flow has been run on only a fraction of the configurations in most ensem-
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Figure 1: Left) Comparison of percent error for different scale setting quantities. The dashed lines denote the
lattice spacing and all values are for the physical quark-mass ensembles. The star points for w0 are estimates
of the percent error obtainable for the full ensembles. Right) Simple linear and quadratic extrapolations are
plotted. No adjustments are made for mistunings of quark masses. The central value and statistical error are
represented by the black, continuum point.

bles. Each ensemble has or will have approximately 1000 configurations, which leaves plenty of
room for reduction of statistical errors. Note, the reduction would be particularly large for the finer
a = 0.09 and 0.06 fm ensembles where Nrun is still small. As a comparison, Fig. 1 (Left) plots the
percent error of w0/a and other scale-setting quantities against a for the four physical quark mass
ensembles. Only fp4sa, the pseudoscalar decay constant at the fiducial point with valence-quark
masses 0.4 times the strange quark mass [6], has lower percent errors than w0/a. However, fp4sa
was computed over the entirety of each ensemble. Using conservative estimates of the autocorre-
lation length, the statistical error of w0/a should be comparable to or better than the error of fp4sa
if computed on the same number of configurations.

A simple continuum extrapolation can be performed by including only the physical quark-
mass ensembles. With just these ensembles, quark mass mistuning effects cannot be accounted for,
and the statistical error will be larger than from a fit to the complete data set. Nevertheless, this
extrapolation provides a double check on the final value from the more complicated fit. The results
of a linear and quadratic fit to w0 fπ in powers of αsa2 are shown in Fig. 1 (Right). Taking w0 from
the quadratic fit as the central value, and the difference between the two fits as extrapolation error,
this fit gives w0 = 0.1711(3)(3) fm.

4. Fitting and Extrapolation

The value of w0 fπ may be simultaneously interpolated to physical quark masses and extrapo-
lated to the continuum by fits to all of our data. All fit functions used are power series in a2 or αsa2,
M2

π , and 2M2
K −M2

π where the latter two are proxies for ml and ms, respectively. Starting at linear
order, fit functions up to cubic order in each variable (including cross terms) are considered. The
lowest order discretization term is always αsa2, and higher orders are powers of either a2 or αsa2.
Including the non-physical m′s ensembles gives us the most data to work with and helps correct
mistuning errors. However, those ensembles cover a wide range of m′s values, so we also consider
fits that drop one or more of those ensembles with the lightest strange-quark masses. Five different
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Figure 2: Left) A representative best fit used to compute w0 at physical quark mass and extrapolated to the
continuum. Only m′s = ms ensembles are plotted, but the fit includes all m′s ≤ ms ensembles. Dotted lines
represent the fit through each ensembles quark masses, while the solid lines are for retuned quark masses
per legend. Right) A histogram of the continuum, physical quark mass w0 for the acceptable fits (p-value
greater than 0.01). Preferred fits (see text) are plotted in red. The green cross represents the chosen central
value and extrapolation error.

cutoffs on m′s were considered. In total, there are five choices for parameterizing discretization ef-
fects (powers of a2 or αsa2), three possible orders of M2

π and 2M2
K−M2

π , and five different datasets
to choose from (corresponding to different cutoffs on m′s), yielding 215 different fits. Note that 10
such fits would have more parameters than degrees of freedom and are therefore excluded from the
count.

A fit is considered acceptable if it has a p-value greater than 0.01. An acceptable fit is consid-
ered to be “preferred” if it displays at least two of the following three attributes: a p-value greater
than 0.1, at least twice as many degrees of freedom as fit parameters, or a deviation smaller than
one sigma from the physical 0.06 fm ensemble, which is the most important ensemble since it has
the finest lattice spacing and physical masses. A representative preferred fit is plotted in Fig. 2
(Left). The values of w0 fπ for all acceptable fits are binned and placed in the histogram in Fig. 2
(Right). From among the preferred fits, a central fit is chosen close to the median of the preferred
and acceptable fits. The error from this procedure is conservatively estimated as the width of the
histogram. The chosen central fit has the functional form

w0 fπ = c0 + c1αsa2 + c2M2
π + c3(2M2

K−M2
π)+ c4a4 + c5M4

π + c6a2M2
π

with 20 points fit (all non-physical ms ensembles included). The fit has χ2/do f = 18.6/13, p =

0.14, and is 1.4σ from the re-tuned physical 0.06 fm ensemble.

5. Autocorrelations

To help pick the jackknife bin size and control correlations, we compute the autocorrelation
function of 〈E(t)〉 as a function of the flow time t and the number, τ , of unit trajectories separating
configurations. Autocorrelation functions are notoriously difficult to estimate precisely, and for
many of the ensembles the τ between the configurations used to determine w0 is not small enough
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Figure 3: Left) The integrated autocorrelation length as a function of flowtime for ensembles with
ml/ms = 0.1. The plotted error bars are a combination of the statistical error and variation with the choice
of integration region, added in quadrature. Dashed vertical lines denote the flow time that determines w0.
Right) The jackknifed, integrated autocorrelation length for different choices of the cutoff τ , on the 0.12fm
ml/ms = 0.1 ensemble. The plots correspond to the largest and smallest integration length where the statis-
tical errors are not completely uncontrolled. The autocorrelation lengths for the two halves of the ensemble
are plotted for each cutoff. The error associated with the cutoff is denoted by the orange vertical line.

to see correlations reliably. In particular, at 0.09 and 0.06 fm, running over the entire ensembles to
compute autocorrelation lengths is computationally expensive. Instead, we run on only 50 and 25
equilibrated configurations separated by 24 unit trajectories from the ml/ms = 0.1, a = 0.09 and
0.06 fm ensembles, respectively. For the ensembles at 0.15 and 0.12 fm where the full ensembles
have been run, we have a much better estimate of the autocorrelation function. A comparison of
the integrated autocorrelation length as a function of flow time for different lattice spacings and
light sea quark masses is plotted in Fig. 3 (Left).

To estimate the statistical error on the integrated autocorrelation length, we jackknife the re-
sults for 〈E(t)〉 and compute the average autocorrelation function across all flow times. We inte-
grate the the average autocorrelation function up to a cutoff value of τ where the autocorrelations
become indistinguishable from noise. There is additional error from the choice of the cutoff, which
is not completely separable from the estimate of the statistical error. We attempt to account for
this error by measuring the difference between the largest and smallest integrated autocorrelation
lengths for which the statistical errors are not completely uncontrolled. As a function of increasing
cutoff, the errors are considered to have become “uncontrolled” when the deviation between the
result on the full dataset and those on the first or second halves is more than 3 sigma. Fig. 3 (Right)
illustrates the integration error estimation process for the 0.12 fm ml/ms = 0.1 ensemble. The in-
tegration region yielding the largest integrated autocorrelation length is chosen for each ensemble
in Fig. 3 (Left) in order to estimate the worse-case scenario.

6. Results and Conclusion

For each HISQ ensemble, we jackknife w0/a with a bin size larger than the estimated auto-
correlation length. Then we compute w0 fπ through a simultaneous extrapolation to the continuum
and physical quark masses, and use the experimental value of fπ to yield w0 in physical units. This
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yields the final (but still preliminary) value of

w0 = 0.1711(2)(8)(2)(3) fm ,

where the errors are statistical, systematic error from the continuum extrapolation and chiral inter-
polation, residual finite volume error in a fπ , and experimental error in fπ , respectively. The result
is in agreement with simple continuum extrapolation through the physical mass ensembles, which
gives w0 = 0.1711(3)(3) fm (statistical and rough continuum extrapolation errors only).

HPQCD has also calculated w0 on a the 0.15 to 0.09 fm, physical strange quark mass MILC
HISQ ensembles [7], a subset of the ensembles considered here. They used the Wilson action in
the flow, and also set the absolute scale with fπ , as we have done here. They report a final value
of w0 = 0.1715(9) fm, well within one standard deviation of our result. At the moment, there are
no other complete computations of w0 with N f = 2+1+1 fermions. ETM reported a preliminary
value of w0 = 0.1782 fm on their N f = 2+ 1+ 1 twisted mass ensembles, but the error analysis
at that time was not complete [8]. BMW reports w0 = 0.1755(18)(04) fm on N f = 2+ 1 2-HEX
smeared Wilson-clover ensembles, a value about 2.1 (joint) sigma from ours. It is conceivable that
the difference between their result and ours is due to the different numbers of flavors in the sea.
However, as reported in Ref. [5], there is no obvious trend in w0 as N f increases.
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